K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 4 2021

\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)

\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)

\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)

\(P\le2\left(x+y+z\right)=2\)

\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)

16 tháng 6 2020

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

16 tháng 6 2020

mình nhầm :) làm lại nhé

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)

21 tháng 7 2021

Đúng thì like giúp mik nha. Thx bạnundefined

NV
21 tháng 7 2021

\(A=xy+xz+2yz+2xz=x\left(y+z\right)+2z\left(x+y\right)\)

\(=x\left(6-x\right)+2z\left(6-z\right)=-x^2+6x+2\left(-z^2+6z\right)\)

\(=-\left(x-3\right)^2-2\left(z-3\right)^2+27\le27\)

\(A_{max}=27\) khi \(\left(x;y;z\right)=\left(3;0;3\right)\)

23 tháng 7 2023

a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)

\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có: 

 \(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\) 

\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)

\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)

\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)

Uầy đề sai đâu ta

\(A=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\frac{xz}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng bđt AM-GM ta có

\(A\le\frac{y}{x+y}+\frac{z}{x+z}+\frac{x}{x+y}+\frac{y}{y+z}+\frac{x}{x+z}+\frac{y}{y+z}=3\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{2020}{3}}\)

12 tháng 3 2020

Cứ tưởng áp dụng Cô si cho 2 tổng ở mẫu thôi :) quên là còn áp dụng như này :) nhưng bạn còn sai 1 chỗ nhé 

\(\sqrt{a.b}\le\frac{a}{2}+\frac{b}{2}.\) MaxA =3/2 :v