1, tính nhanh:
(1-1/2) *(1-1/3) *(1-1/4)* (1-1/5)*......*(1-1/2003)*(1-1/2004)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)...\left(1-\dfrac{1}{2003}\right).\left(1-\dfrac{1}{2004}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{2002}{2003}.\dfrac{2003}{2004}\)
\(A=\dfrac{1}{2004}\)
1) =1/2 x 2/3 x 3/4 x 4/5 x .... x 2002/2003 x 2003/2004
=1/2004
2) 1/2 x X-3/4=5/6
1/2 x X =3/4+5/6
1/2 x X =19/12
X=19/6
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2002}{2003}.\frac{2003}{2004}\)
\(=\frac{1.2.3...2002.2003}{2.3.4...2003.2004}=\frac{1}{2004}\)
\(\frac{1}{2}.x-\frac{3}{4}=\frac{5}{6}\)
\(\frac{1}{2}.x=\frac{5}{6}+\frac{3}{4}\)
\(\frac{1}{2}.x=\frac{10}{12}+\frac{9}{12}=\frac{19}{12}\)
\(x=\frac{19}{12}:\frac{1}{2}\)
\(x=\frac{19}{12}.2=\frac{19}{6}\)
\(=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{2002}{2003}x\frac{2003}{2004}=\frac{1x2x3x...x2002x2003}{2x3x4x...x2003x2004}=\frac{1}{2004}\)
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2002}{2003}.\frac{2003}{2004}\)
\(=\frac{1.2.3...2002.2003}{2.3.4...2003.2004}=\frac{1}{2004}\)
ta sẽ ra được kết quả qua cách giảm ước của cả tử và mẫu . vậy cuối cùng nhìn lại trên tử còn 1 mẫu thì còn 2004 vậy phân số ra được là 1/2004
\(B=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2002}{2003}x\frac{2003}{2004}\)
\(B=\frac{1x2x3x4x...x2002x2003}{2x3x4x5x...x2003x2004}\)
Rút gọn các thừa số ở tử và mẫu ta được:
\(B=\frac{1}{2004}\)
Đ/S:\(\frac{1}{2004}\)
Ta có:
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{2002}{2003}.\frac{2003}{2004}\)
\(=\frac{1.2....2002.2003}{2.3....2003.2004}\)
Đơn giản hết sẽ là:
\(=\frac{1}{2004}\)
Đề bài
= \(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2002}{2003}\times\frac{2003}{2004}\)
= \(1\times2\times3\times4\times...\times2002\times2003/2\times3\times4\times5\times...2003\times2004\)
= \(\frac{1}{2004}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2002}{2003}.\frac{2003}{2004}=\frac{1}{2004}\)
(1-1/2)x(1-1/3)x(1-1/4)x(1-1/5)x.......x (1-1/2003)x(1-1/2004)
=1/2 x 2/3 x 3/4 x 4/5 x.....x2002/2003 x 2003/2004
=\(\frac{1\times2\times3\times4\times...\times2002\times2003}{2\times3\times4\times5....\times2003\times2004}\)
=\(\frac{1}{2004}\)
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x...x\left(1-\frac{1}{2003}\right)x\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2002}{2003}x\frac{2003}{2004}\)
\(=\frac{1x2x3x4x....x2002x2003}{2x3x4x5x...x2003x2004}\)
\(=\frac{1}{2004}\)