mấy thánh giả hộ con cái Hệ phương trình
\(\hept{\begin{cases}\left(\sqrt{2017+x^2}+x\right)\left(\sqrt{2017+y^2}+y\right)=2017\\3x^2+8y^2-12xy=23\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y
Lời Giải
Cộng theo vế 2 pt trên, ta có
3(x+1)2+2(x−1)2=83(x+1)2+2(x−1)2=8
⇔5x2+2x−3=0⇔5x2+2x−3=0
⇔⎡⎣x=35x=−1⇔[x=35x=−1
Ta viết lại pt (2)
x+5(y−1)=xyx+5(y−1)=xy
⇔(x−xy)+5(y−1)=0⇔(x−xy)+5(y−1)=0
⇔x(1−y)−5(1−y)=0⇔x(1−y)−5(1−y)=0
⇔(x−5)(1−y)=0⇔(x−5)(1−y)=0
⇔[x=5y=1⇔[x=5y=1
- TH1: Thay x = 5 vào pt (1) tìm được [y=−5+52−√y=−5−52−√[y=−5+52y=−5−52
- TH2: Thay y = 1 vào pt (1) tìm được [x=−1+52−√x=−1−52−√[x=−1+52x=−1−52
Áp dụng BĐT vào giải pt 2 dựa vào đk x,y>0; x+y=căn bậc 3 2014
suy ra dấu =
\(\hept{\begin{cases}x^{2017}+y^{2017}=1\left(1\right)\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\left(2\right)\end{cases}}\)
Điều kiện: \(x,y\ge0\)
Dễ thấy \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)không phải là nghiệm của hệ
Đặt \(\hept{\begin{cases}\sqrt[2017.2016]{x}=a>0\\\sqrt[2017.2016]{y}=b>0\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow a^{2016}-b^{2016}=\left(b^{2017}-a^{2017}\right)A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right).B\left(a,b\right)=\left(b-a\right).C\left(a,b\right).A\left(x,y\right)\)
\(\Leftrightarrow\left(a-b\right)\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)=0\)
Dễ thấy \(\left(B\left(a,b\right)+C\left(a,b\right).A\left(x,y\right)\right)>0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow\sqrt[2016.2017]{x}=\sqrt[2016.2017]{y}\)
\(\Leftrightarrow x=y\)
Thế vô (1) ta được:
\(2x^{2017}=1\)
\(\Rightarrow x=y=\sqrt[2017]{\frac{1}{2}}\)
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
mi nói ai là thánh hả :
tao là thánh tè bậy đây
phải nói thêm chữ thánh tè bậy thì ta mới trả lời cho