tính
\(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)
\(=\sqrt{10+2\sqrt{17-4\sqrt{2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2}}}\)
\(=\sqrt{10+2\sqrt{17-4\sqrt{\left(2+\sqrt{5}\right)^2}}}\)
\(=\sqrt{10+2\sqrt{17-4\cdot\left|2+\sqrt{5}\right|}}\)
\(=\sqrt{10+2\sqrt{17-4\cdot\left(2+\sqrt{5}\right)}}\)
\(=\sqrt{10+2\sqrt{17-8-4\sqrt{5}}}\)
\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)
\(=\sqrt{10+2\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}}\)
\(=\sqrt{10+2\sqrt{\left(2-\sqrt{5}\right)^2}}\)
\(=\sqrt{10+2\cdot\left|2-\sqrt{5}\right|}\)
\(=\sqrt{10+2\cdot\left(-2+\sqrt{5}\right)}\)
\(=\sqrt{10+-4+2\sqrt{5}}\)
\(=\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\cdot1+1^2}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left|\sqrt{5}+1\right|\)
\(=\sqrt{5}+1\)
\(=\sqrt{10+2\sqrt{17-4\sqrt{5+4\sqrt{5}+4}}}\)
\(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)
\(=\sqrt{10+2\sqrt{17-4\cdot\left|\sqrt{5}+2\right|}}\)
\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\) (vì \(\sqrt{5}+2>0\))
\(=\sqrt{10+2\sqrt{17-4\sqrt{5}-8}}\)
\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\\ =\sqrt{10+2\sqrt{5-4\sqrt{5}+4}}\\ =\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\\ =\sqrt{10+2\cdot\left|\sqrt{5}-2\right|}\)
\(=\sqrt{10+2\cdot\left(\sqrt{5}-2\right)}\) (vì \(\sqrt{5}-2>0\))
\(=\sqrt{10+2\sqrt{5}-4}\\ =\sqrt{6+2\sqrt{5}}\\ =\sqrt{5+2\sqrt{5}+1}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}\\ =\left|\sqrt{5}+1\right|\)
\(=\sqrt{5}+1\) (vì \(\sqrt{5}+1>0\))
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)
\(\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\dfrac{11\left(4-\sqrt{5}\right)}{16-5}=\sqrt{5}-4+\sqrt{5}=2\sqrt{5}-4\)
a,\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{2^2+2\cdot2\cdot\left(2\sqrt{5}\right)+\left(2\sqrt{5}\right)^2}\) \(+\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\sqrt{5}+2^2}=\sqrt{\left(2+2\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)=\(2+2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}\)
b,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=3-2\sqrt{2}+2\sqrt{2}+1=4\)
c,\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)
`a)\sqrt{9-4sqrt5}-sqrt5`
`=sqrt{5-2.2sqrt5+4}-sqrt5`
`=sqrt{(sqrt5-2)^2}-sqrt5`
`=|\sqrt5-2|-sqrt5`
`=sqrt5-2-sqrt5=-2`
`b)\sqrt{7-4sqrt3}+sqrt{4-2sqrt3}`
`=\sqrt{4-2.2sqrt3+3}+\sqrt{3-2sqrt3+1}`
`=sqrt{(2-sqrt3)^2}+sqrt{(sqrt3-1)^2}`
`=|2-sqrt3|+|sqrt3-1|`
`=2-sqrt3+sqrt3-1=1`
`c)(x-49)/(sqrtx-7)(x>=0,x ne 49)`
`=((sqrtx-7)(sqrtx+7))/(sqrtx-7)`
`=sqrtx+7`
`d)\sqrt{4+2\sqrt3}-\sqrt{13+4sqrt3}`
`=\sqrt{3+2sqrt3+1}-\sqrt{12+2.2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}-\sqrt{(2sqrt3+1)^2}`
`=sqrt3+1-2sqrt3-1=-sqrt3`
`e)2+sqrt{17-4sqrt{9+4sqrt{45}}}`(câu này hơi sai)
a) Ta có: \(9+4\sqrt{5}\)
\(=5+2\cdot\sqrt{5}\cdot2+4\)
\(=\left(\sqrt{5}+2\right)^2\)(đpcm)
b) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
=-2(ddpcm)
c) Ta có: \(\left(4-\sqrt{7}\right)^2\)
\(=16-2\cdot4\cdot\sqrt{7}+7\)
\(=23-8\sqrt{7}\)(đpcm)
d) Ta có: \(\sqrt{17-12\sqrt{2}}+2\sqrt{2}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+2\sqrt{2}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}+2\sqrt{2}\)
\(=3-2\sqrt{2}+2\sqrt{2}=3\)(đpcm)
\(a.VT=4+4\sqrt{5}+5=2^2+4\sqrt{5}+\sqrt{5}^2=\left(2+\sqrt{5}\right)^2=VP\)
\(b.\) Dựa vào câu a ta có: \(9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(VT=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2=VP\)
\(c.VT=16-8\sqrt{7}+7=4^2-8\sqrt{7}+\sqrt{7}^2=\left(4-\sqrt{7}\right)^2=VP\)
\(d.\)
Ta có: \(17-12\sqrt{2}=8-12\sqrt{2}+9=\left(2\sqrt{2}\right)^2-12\sqrt{2}+3^2=\left(2\sqrt{2}-3\right)^2\)
\(VT=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3=VP\)
a,\(\sqrt{\left(\sqrt{3}-1\right)^2}\) \(+\sqrt{\left(\sqrt{3}+1\right)^2}=2\sqrt{3}\)
b. \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=3\sqrt{5}\)
c,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=4\)
d.\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2\sqrt{2}\)
\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)
\(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)
\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\)
\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)
\(=\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\)
\(=\sqrt{10+2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\sqrt{5}+1\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
\(1.\sqrt{17-4\sqrt{9+4\sqrt{5}}}=\sqrt{17-4\sqrt{5+2.2\sqrt{5}+4}}=\sqrt{17-4\left(\sqrt{5}+2\right)}=\sqrt{5-2.2\sqrt{5}+4}=\sqrt{5}-2\)
\(2.\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}=\sqrt{17-6\sqrt{2+2\sqrt{2}+1}}=\sqrt{17-6\left(\sqrt{2}+1\right)}=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)\(3.\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}=\sqrt{3+\sqrt{5-\sqrt{12+2.2\sqrt{3}+1}}}=\sqrt{3+\sqrt{3-2\sqrt{3}+1}}=\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(4.\sqrt{27+10\sqrt{2}}:\dfrac{1}{\sqrt{\left(\sqrt{2}-5\right)^2}}=\sqrt{25+2.5\sqrt{2}+2}.\left(5-\sqrt{2}\right)=\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)=5-2=3\)
`2+\sqrt{17-4sqrt{9+4sqrt5}}`
`=2+sqrt{17-4sqrt{4+2.2sqrt5+5}}`
`=2+sqrt{17-4sqrt{(sqrt5+2)^2}}`
`=2+sqrt{17-4(sqrt5+2)}`
`=2+sqrt{9-4sqrt5}`
`=2+sqrt{5-2.2sqrt5+4}`
`=2+sqrt{(sqrt5-2)^2}`
`=2+sqrt5-2=sqrt5`