K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

2A = (3 - 1)(3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

2A = (32 - 1)(32 + 1) (34 + 1) ... (364 + 1)

= (34 - 1)(34 + 1) ... (364 + 1)

= (38 - 1)(38 + 1)(316+1)(332+1)(364+1)

= (316-1)(316+1)(332+1)(364+1)

= (332-1)(332+1)(364+1)

= (364-1)(364+1)

= (3128-1)

=> A = \(\frac{3^{128}-1}{2}\)

19 tháng 5 2018

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

        \(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

        áp dụng hằng đẳng thức \(a^2-b^2\)

ta có 2A=\(3^{128}-1\)=>A=\(\frac{3^{128}-1}{2}\)

NA
Ngoc Anh Thai
Giáo viên
15 tháng 5 2021

\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)

Vậy \(A=\dfrac{3^{128}-1}{2}.\)

27 tháng 4 2021

a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/6+ 1/72 +1/82 < 1

b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1

27 tháng 4 2021

Xin lỗi mọi người mình tính đặt câu hỏi nhưng ấn nhầm phần trả lời ạ!

18 tháng 7 2021

cho mình cảm ơn nhiều nha!

 

18 tháng 5 2022

`A=1/[\sqrt{3}+1]+1/[\sqrt{3}-1]`

`A=[\sqrt{3}-1+\sqrt{3}+1]/[3-1]`

`A=[2\sqrt{3}]/2=\sqrt{3}`

18 tháng 5 2022

\(A=\dfrac{1}{\sqrt{3+1}}+\dfrac{1}{\sqrt{3-1}}\)

\(A=\dfrac{\sqrt{3-1+\sqrt{3+1}}}{\left(\sqrt{3+1}\right)\left(\sqrt{3-1}\right)}\)

\(A=\dfrac{2\sqrt{3}}{3-1}\)

\(A=\dfrac{2\sqrt{3}}{2}\)

\(A\sqrt{3}\)

29 tháng 3 2022

yggucbsgfuyvfbsudy

30 tháng 3 2022

????????

3 tháng 1 2021

mai mk thi rùi cầu cho các bạn trai xinh gái đẹp giúp mk với huhu

26 tháng 2 2018

Ta có : 

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

\(2A=1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(1+2+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

\(A=\frac{2^{2013}-1}{2^{2012}}\)

Vậy \(A=\frac{2^{2013}-1}{2^{2012}}\)

10 tháng 6 2015

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

=>2A=\(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)=2-\frac{1}{2^{2012}}\)

=>A=\(\frac{2^{2013}-1}{2^{2012}}\)