timf nghiệm nguyên dương x,y,z sao cho 1/x=1/y=1/z=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0
+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:
x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)
= x+y+z/2.(x+y+z) = 1/2 = x+y+z
=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2
=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2
=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2
=> x=1/6 = y; z = -1/2
b) Theo bài ra ta có:
x + 1/x = k (k thuộc Z)
=> x^2+1/x = k
+ Với k = 0 => x = 0 (thỏa mãn)
+ Với k khác 0, do k nguyên nên x^2+1/x nguyên
=> x^2+1 chia hết cho x
=> 1 chia hết cho x
=> x thuộc {1 ; -1} (thỏa mãn)
Vậy số hữu tỉ x cần tìm là 0; 1; -1
#) Giải
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán
~ Hok tốt ~
kham khảo ở đây nha
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này
hc tốt ~:B~
\(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=1\)
\(\Leftrightarrow x=y=z=1\)
vậy nghiệm nguyên của pt là : \(\left(x,y,z\right)=1\)
Nếu \(z\ge y\ge x\ge1\) thì
_ \(x=\frac{1\Rightarrow1}{y}+\frac{1}{z}=0\)( Ko thỏa mãn )
_ \(x=2\Rightarrow\frac{1}{y}+\frac{1}{z}=2\)\(\Rightarrow2y+2z=yz\Rightarrow\left(y-2\right)\left(z-2\right)=4\)
ta xét các trường hợp :
\(\hept{\begin{cases}y-2=1\\z-2=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\z=6\end{cases}}}\)
Hoặc \(\hept{\begin{cases}y-2=2\\z-2=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\z=4\end{cases}}}\)
_ Nếu \(x=3\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)
_ Nếu \(x=3\Rightarrow y=3\)
_ Nếu \(y\ge4\Rightarrow\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)( Mà \(\frac{3}{4}< 1\)) ( Ko thỏa mãn )
Vậy tự kết luận