Phân tích đa thức thành nhân tử :
\(x^4+14x^3+9x^2-215x-456\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-9x^2+14x\)
= \(x^3-7x^2-2x^2+14x\)
= \(x^2.\left(x-7\right)-2x.\left(x-7\right)\)
= \(\left(x-7\right).\left(x^2-2x\right)\)
= \(\left(x-7\right).\left(x-2\right).x\)
\(x^3-9x^2+14x\)
\(=x\left(x^2-9x+14\right)\)
\(=x\left(x^2-7x-2x+14\right)\)
\(=x\left[x\left(x-7\right)-2\left(x-7\right)\right]\)
\(=x\left(x-2\right)\left(x-7\right)\)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
a)\(3x^2-5x-2=3x^2-6x+x-2=3x\left(x-2\right)+\left(x-2\right)\)
\(=\left(3x+1\right)\left(x-2\right)\)
\(x^3-9x^2+14x=x\left(x^2-9x+14\right)\)
\(=x\left(x^2-2x-7x+14\right)=x\left(x\left(x-2\right)-7\left(x-2\right)\right)\)
\(=x\left(x-7\right)\left(x-2\right)\)
1.2x^2+x-6=2x^2+4x-3x+6=(2x^2+4x)-(3x+6)=2x(x+2)-3(x+2)=(x+2)(2x-3)
2.x^3-9x^2+14x
=x*(x^2-9x+14)
=x*(x^2-7x-2x+14)
=x*((x^2-7x)-(2x-14))
=x*(x(x-7)-2(x-7))
=x*((x--7)(x-2))
=x*(x-7)(x-2)
p/ x4 - 9x3 + 22x2 - 9x + 1
= (x4 - 5x3 + x2) + (- 4x3 + 20x2 - 4x) + (x2 - 5x + 1)
= (x2 - 5x + 1)(x2 - 4x + 1)
q) x4 - 6x3 + 14x2 - 22x + 5
= (x4 - 4x3 + x2) + (- 2x3 + 8x2 - 2x) + (5x2 - 20x + 5)
= (x2 - 4x + 1)(x2 - 2x + 5)
\(x^4-14x^3+71x^2-154x+120\)
\(=x^4-2x^3-12x^3+24x^2+47x^2-94x-60x+120\)
\(=x^3\left(x-2\right)-12x^2\left(x-2\right)+47x\left(x-2\right)-60\left(x-2\right)\)
\(=\left(x-2\right)\left(x^3-12x^2+47x-60\right)\)
\(=\left(x-2\right)\left(x^3-3x^2-9x^2+27x+20x-60\right)\)
\(=\left(x-2\right)\left[x^2\left(x-3\right)-9x\left(x-3\right)+20\left(x-3\right)\right]\)
\(=\left(x-2\right)\left(x-3\right)\left(x^2-9x+20\right)\)
\(=\left(x-2\right)\left(x-3\right)\left(x^2-4x-5x+20\right)\)
\(=\left(x-2\right)\left(x-3\right)\left[x\left(x-4\right)-5\left(x-4\right)\right]\)
\(=\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)\)