Cho tam giác ABC vuông tại A, đường cao AH. I và K là giao điểm các đường phân giác trong tam giác AHB và AHC. Gọi Q là giao điểm của BI và AK. R là giao điểm của CK và AI. O là giao điểm của BI và CK. Đường thẳng IK giao AB, AC lần lượt tại M và N.
a) Chứng minh \(\Delta AMN\) vưông cân
b) Chứng minh AH=AM từ đó chứng minh \(S_{AMN}\le\frac{1}{2}S_{ABC}\)
c) Chứng minh OA^2=2.RQ^2\(OA^2=2RQ^2\)
MỌI NGƯỜI GIÚP EM VỚI