chứng minh :
a) 1/1.2 + 1/2.3 +1/3.4+...+ 1/49.50 < 1
b)1/5^2 +1/6^2 +1/7^2 +...+ 1/2013^2 <1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Ta có :A=1/1.2+1/3.4+...+1/99.100=1/2+1/12+...+1/9900
7/12=1/2+1/12
Vì 1/2+1/12<1/2+1/12+...+1/9900
Nên: 7/12<A (1)
Lại có:A=1/1.2+1/3.4+...+1/99.100
=1-1/2+1/3-1/4+...+1/99-1/100
=(1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
5/6=1-1/2+1/3
vì: 1-1/2+1/3 < (1-1/2+1/3)+(-1/4+1/5-1/6)+...+(-1/98+1/99-1/100)
nên 5/6 < A (2)
Từ (1) và (2) suy ra 7/12<A<5/6
1/1.2+1/3.4+1/5.6+...+1/49.50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=1/1+1/2+1/3+1/4+...+1/49+1/50-2(1/2+1/4+1/6+...+1/50)
=1/1+1/2+1/3+1/4+...+1/49+1/50-(1/1+1/2+1/3+1/4+...+1/25)
=1/26+1/27+...+1/50=1/26+1/27+...+1/50(đpcm)
b. 1/1-1/2+1/3-1/4+...+1/99-1/100=99/100
7/12=175/300; 5/6=10/12=250/300; 99/100=297/300
(hình như khúc này đề bài sai hả bạn) bạn tự tính ra nhé
bài 2: a.x+1/10+x/12+x/14+...x+1/20
(x+x+x...+x)+(1/10+1/12+...+1/20)
ko có kết quả sao tìm x được bạn:[
b.x+1/2000+x+2/1999=x+3/1998+x+4/1997
x+1/2000+x+2/1999=x+3/1998+x+4/1997
(x+1/2000+1)+(x+2/1999+1)=(x+3/1998+1)+(x+4/1997+1)
x+2002/2000+x+2002/1999=x+2002/1998+x+2002/1997
x+2002(1/2000+1/1999)=(x+2002)(1/1998+1/1997)
=>(1/2000+1/1999)=(1/1998+1/1997)
x+2002(1/2000+1/1999)-(x+2002)(1/1998+1/1997)=0
(x+2002)(1/2000+1/1999-1/1998-1/1997)=0
(x+2002).0=0
(x+2002)=0
x =0-2002=-2002
Chúc bạn học tốt.
\(a)\) Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\) ta có :
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)
Giữ nguyên phân số \(\frac{49}{50}\)
Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)
\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Vì \(\frac{245}{420}< \frac{245}{294}< \frac{245}{250}\)
Vậy \(\frac{7}{12}< \frac{49}{50}< \frac{5}{6}\)
a ) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
Vi \(1-\frac{1}{50}< 1\)
=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\)
b ) Dat B = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}\)
Ta co :
\(\frac{1}{5^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)
...
\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)
Vay \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2012}-\frac{1}{2013}\)
=> B < \(\frac{1}{4}-\frac{1}{2013}\)
Ma \(\frac{1}{4}-\frac{1}{2013}< \frac{1}{4}\)
=> B < \(\frac{1}{4}\)
KL : \(Vay\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}< \frac{1}{4}\)