K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

   \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

=>\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

=>\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)

=>\(S=1-\frac{1}{2^9}=\frac{511}{512}\)

Vậy \(S=\frac{511}{512}\)

Ta có : \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^9}\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^8}\)

\(\Rightarrow2S-S=1-\frac{1}{2^9}\)

\(\Leftrightarrow S=1-\frac{1}{2^9}\)

26 tháng 2 2020

S = (1/2 + 3/2 + 5/2 + ... + 19/2) + (1+2+3+...+9)

= A + 45

A = \(\frac{1+3+5+...+19}{2}\)

Tử số có số số hạng là: (19-1)/2 + 1 = 10 số

=> A = \(\frac{\left(19+1\right)x10:2}{2}=20x5:2=50\)

=> S = 50 + 45 = 95

26 tháng 2 2020

S= (1+2+3+4+...+9) . \(\left(\frac{1}{2}+\frac{3}{2}+\frac{5}{2}+...+\frac{19}{2}\right)\)

S=(1+9).9:2.\(\frac{1+3+5+7+...+19}{2}\)

S=45.\(\frac{\left[\left(19-1\right):2+1\right].\left(19+1\right):2}{2}\)

S=45.50=2250

11 tháng 7 2016

S=..... (đề bài)

\(\Rightarrow2S=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

\(\Rightarrow2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)

\(\Rightarrow S=1-\frac{1}{2^9}=1-\frac{1}{256}=\frac{255}{256}\)

22 tháng 5 2017

Câu 1 có sai đề bài không đấy?

22 tháng 5 2017

Câu 2: Ta có \(S=6^2+18^2+30^2+...+126^2\)

                   \(S=6^2\left(1^2+3^2+5^2+...+21^2\right)\)

                       \(=6^2.1771=36.1771=63756\)

10 tháng 5 2017

Bài 1:

A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(1-\frac{1}{50}=\frac{49}{50}\)

Bài 2:

Ta có: \(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)

Vậy A < 2

Bài 3:

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

Bài 4:

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)

10 tháng 5 2017

A=1-1/2+1/2-1/3+.............................1/49-1/50

A=1-1/50

A=49/50

17 tháng 4 2016

a) ta có:

\(\frac{-1}{2}-1\le x\le\frac{1}{2}.3\)

hay \(-1,5\le x\le1,5\)

vì x\(\in Z\) nên ta chọn x=-1,0,1

17 tháng 4 2016

ta có:

3S=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)

3S-S=\(\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\right)\)

2S=1-\(\frac{1}{3^9}\)

s=\(\left(1-\frac{1}{3^9}\right):2\)

1 tháng 10 2018

Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)

Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)

                                                       \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )

                                                         \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)

                                                          \(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)

Áp dụng ta được \(S=\left|\frac{1}{2}-\frac{1}{1}-1\right|+\left|\frac{1}{3}-\frac{1}{2}-1\right|+...+\left|\frac{1}{100}-\frac{1}{99}-1\right|\)

                               \(=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)

                                \(=\left(1+1+1+...+1\right)+\left(1+\frac{1}{2}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{100}\right)\)

                                                    (có 99 số 1) 

                                 \(=99+1-\frac{1}{100}\)            

                                 \(=100-\frac{1}{100}=\frac{9999}{100}\)

18 tháng 10 2016

Bài 1 :

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)

Bài 2 :

\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)

\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)

Bài 3 :

\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)

\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)

\(3S=\frac{1}{4}-\frac{1}{22}\)

\(S=\frac{18}{88}\div3=\frac{6}{88}\)

20 tháng 3 2018

Ta có : 

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)

\(S=6-\frac{3}{2^9}\)

\(S=\frac{2^{10}.3-3}{2^9}\)

Vậy \(S=\frac{2^{10}.3-3}{2^9}\)

20 tháng 3 2018

vận dụng 3S lên

xong tìm S nha bn ok

tại k có thời gian nên chỉ giúp thế thôi