cho a, b, c là các số nguyên thoả mãn a+b+c = 1 mũ 2 + 2 mũ 2+...+2021 mũ 2 . chứng tỏ a mũ 2+b mũ 2+c mũ 2 là số lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{\left(a+2017b\right)^2}{(b+2017c)^2}=\frac{a^2+2017b^2}{ac+2017c^2}=\frac{a^2+2017ac}{ac+2017c^2}=\frac{a.\left(a+2017c\right)}{c.\left(a+2017c\right)}=\frac{a}{c}\)
=> ĐPCM
Học tốt
.............
\(a^2+c^2=b^2+d^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)
Ta có
\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta thấy
\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2
\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)
Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)
\(\Rightarrow a+b+c+d⋮2\)
Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2
=> a+b+c+d là hợp số
A = [(a +b) + (c + d)].[(a + b) + (c + d)]
A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)
A = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2
A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd
A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]
A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]
⇒ A ⋮ 2 ⇒ a + b + c + d ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2
Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)
B = 2^2023 chứ nhỉ
A = 2^0 + 2^1 + 2^2 + ... + 2^2022
2A = 2^1 + 2^2 + 2^3 + ... + 2^2023
=> 2A - A = (2^1 + 2^2 + ... + 2^2023) - (2^0 + 2^1 + 2^2 + ... + 2^2021)
=> A = 2^2023 - 2^0
=> A = 2^2023 - 1
=> A và B là 2 stn liên tiếp
Ta có:
A=20+21+22+...+22020+22021A=20+21+22+...+22020+22021
⇔2A=21+22+23+...+22021+22022⇔2A=21+22+23+...+22021+22022
⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)⇔2A−A=(21+22+23+...+22021+22022)−(20+21+22+...+22020+22021)
⇔A=22022−20⇔A=22022−20
⇔A=22022−1⇔A=22022−1
Mà B=22022⇒B=A+1B=22022⇒B=A+1
⇒A⇒A và BB là 22 số tự nhiên liên tiếp.
chúc học tốt.
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{101}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(a=2^{101}-2\)
\(a+2=2^{101}-2+2=2^{201}\)
\(\Rightarrow x=101\)
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(a=2^{99}-2\)
\(a+2=2^{99}-2+2=2^{99}\)
\(\Rightarrow x=99\)
Ta có: \(1^2+3^2+5^2+...+2021^2\) tổng trên có \(\left(2021-1\right)\div2+1=1011\)số hạng
do đó \(1^2+3^2+5^2+...+2021^2\)là số lẻ nên \(a+b+c=1^2+2^2+3^2+...+2021^2\)là số lẻ.
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(\left(a+b+c\right)^2\)là số lẻ, \(2\left(ab+bc+ca\right)\)là số chẵn
nên \(a^2+b^2+c^2\)là số lẻ.