Tìm giá trị a của đa thức n(x) = ax^3 - 2ax -3 biết n(x) có nghiệm x=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: N(x) = \(a.\left(-1\right)^3-2a.\left(-1\right)-3\) = 0
\(\Rightarrow\) (- a) + 2a = 3
\(\Rightarrow\) a = 3
mk nhanh nhất
ta có x=-1 là ngiệm của N(x)
=>ax^3-2ax-3=a.(-1)3-2a(-1)-3=0
=-a+2a-3=0
=a+3=0
=a =-3
Vậy a=3 thì N(x) có nghiệm là -1
a)f(0) = 02 - 4.0 + 3= 0 - 0 + 3 = 3
f(1) = 12 - 4.1 +3 = 1 - 4 +3 = 0
f(-1) = (-1)2 - 4.(-1) +3 = 1 - (-4) +3 = 8
f(3)= 32 - 4.3 +3 = 9 - 12 + 3 = 0
vậy giá trị 1 và 3 là nghiệm của đa thức f(x)
b)thay x = -1 vào đa thức N(x) ta được:
N(x) = a. (-1)3 - 2a.(-1) - 3 = 0
\(\Leftrightarrow\) a. (-1) - 2a.(-1) = 3
\(\Leftrightarrow\) (- a) + 2a = 3 \(\Rightarrow\) a = 3
Hướng dẫn:
a, Bạn thay xem số nào thì f(x) = 0 thì số đó là nghiệm
hoặc có thể tìm x với f(x) = 0 rồi chọn số
b, thay x = -1 là nghiệm của N(x) ta có:
\(-a+2a-3=0\Rightarrow a=3\)
Vậy a = 3
a)f(0)=02-4.0+3=0-0+3=3
f(1)=12-4.1+3=1-4+3=0
f(-1)=(-1)2-4.(-1)+3=1+4+3=8
f(3)=32-4.3+3=9-12+3=0
b)
a.(-1)3-2a.(-1)-3=0
-a+2a-3=0
a-3=0
a=3
Đa thức có nghiệm \(\Rightarrow\Delta'=a^2-\left(2a^2+b^2-5\right)\ge0\)
\(\Rightarrow a^2+b^2\le5\)
\(P=\left(a+1\right)\left(b+1\right)=ab+a+b+1=\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}+a+b+1\)
\(P\ge\dfrac{\left(a+b\right)^2-5}{2}+a+b+1=\dfrac{1}{2}\left(a+b+1\right)^2-2\ge-2\)
\(P_{min}=-2\) khi \(\left\{{}\begin{matrix}a^2+b^2=5\\a+b+1=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;-1\right);\left(-1;2\right)\)
Ta có: \(\text{N(x) = ax^3 - 2ax -3}\)
⇒N(-1)= a.\(\left(-1\right)^3\) – 2a.(-1)-3 =0 (Do x=-1 là nghiệm)
⇒N(-1)= -a + 2a – 3 =0
⇒N(-1)= a - 3 =0
⇒a = 3
k mình nha!!!!!!!!!!!!!