Cho đường tròn (O) đường kính AB=2R. Về bán kính OC vuông góc tại AB lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F a, CMR: BHEF nội tiếp b,CMR: BI.BF=BC.BE c, Tính S của tam giác FEC theo R khi H là trung điểm của OA d, Cho K di chuyển trên cung nhỏ AC. CMR: đương thẳng FH lươn đi qua 1 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem chi tiết tại đây: https://www.facebook.com/%C3%94n-thi-v%C3%A0o-l%E1%BB%9Bp-10-108156447351664/
1) AB là đường kính \(\Rightarrow\angle ACB=90\) mà \(\angle IHB=90\Rightarrow BHIC\) nội tiếp
2) Xét \(\Delta AHI\) và \(\Delta ACB:\) Ta có: \(\left\{{}\begin{matrix}\angle AHI=\angle ACB=90\\\angle CABchung\end{matrix}\right.\)
\(\Rightarrow\Delta AHI\sim\Delta ACB\left(g-g\right)\Rightarrow\dfrac{AI}{AH}=\dfrac{AB}{AC}\Rightarrow AI.AC=AB.AH\)
Tương tự \(\Rightarrow\Delta BIH\sim\Delta BAE\Rightarrow\dfrac{BI}{BH}=\dfrac{BA}{BE}\Rightarrow BI.BE=BA.BH\)
\(\Rightarrow AI.AC+BI.BE=AH.AB+BH.AB=AB\left(AH+BH\right)\)
\(=AB^2=4R^2\)
3) Xét \(\Delta CAB\): Ta có: \(\left\{{}\begin{matrix}\angle ACB=90\\AO=OB\\CO\bot AB\end{matrix}\right.\Rightarrow\Delta CAB\) vuông cân tại C
\(\Rightarrow\) C cố định
Ta có: \(\angle ECO+\angle EHO=90+\angle ECA+\angle ACO+\angle EHI\)
\(90+\angle EBA+\angle CAO+\angle IAE=90+\angle EAB+\angle EBA=180\)
\(\Rightarrow CEHO\) nội tiếp mà \(\angle HOC=90\Rightarrow\angle HEC=90\Rightarrow HE\bot EC\)
Vì \(CEHO\) nội tiếp \(\Rightarrow\) tâm của (CEH) là tâm của (CEHO)
\(\Rightarrow\) tâm của (CEH) thuộc trung trực CO mà C,O cố định
\(\Rightarrow\) đpcm
Lời giải:
A. Đúng vì:
\(\widehat{AHB}=\widehat{AKB}=90^0\) nên tgiac $ABHK$ nội tiếp
$\Rightarrow \widehat{IHK}=\widehat{IBA}=\widehat{ABF}=\widehat{AEF}$. Hai góc ở vị trí đồng vị nên $HK\parallel EF$
C. Đúng vì:
$AB^2=2R^2=OA^2+OB^2$ nên theo Pitago đảo thì $AOB$ vuông tại $O$
$\Rightarrow \widehat{ACB}=\frac{1}{2}\widehat{AOB}=45^0$
B. Đúng vì:
\(\widehat{EBC}=\widehat{HAC}=90^0-\widehat{ACH}=90^0-\widehat{ACB}=45^0\)
Mà $\widehat{HAC}=\widehat{HAK}=\widehat{KBH}=\widehat{FBC}$ do $AKHB$ là tứ giác nội tiếp.
$\Rightarrow \widehat{FBC}=45^0$
$\widehat{FBE}=\widehat{FBC}+\widehat{EBC}=45^0+45^0=90^0$ nên $EF$ là đkinh.
$\Rightarrow O,E,F$ thẳng hàng.
Suy ra đáp án D là sai.