K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

O A B D C I H M d

1) Do DB và DC là 2 tiếp tuyến của (O) => ^DBO=^DCO=900 

=> Tứ giác DBOC nội tiếp đường tròn (Tâm là trung điểm OD) (1)

Xét tứ giác DHOC: ^DHO=^DCO=900 

=> Tứ giác DHOC nội tiếp đường tròn (Tâm là trung điểm DO) (2)

Từ (1) và (2) => 5 điểm D,H,B,O,C cùng nằm trên 1 đường tròn (đpcm)

DB và DC là 2 tiếp tuyến của (O) => DB=DC => D thuộc trung trực của BC

Mà BC là dây cung của (O) nên O cũng thuộc trung trực của BC  

=> OD \(\perp\)BC (tại I) => ^DIA=900

Xét tứ giác DIHA: ^DHA=^DIA=900 (cmt) => Tứ giác DIHA nội tiếp đường tròn (đpcm).

2) Dễ chứng minh \(\Delta\)OBI ~ \(\Delta\)ODB (g.g) => \(\frac{OB}{OD}=\frac{OI}{OB}\Rightarrow OB^2=OI.OD\)

Mà OB=OM (cùng nằm trên (O)) => \(OM^2=OI.OD\)(3)

Hoàn toàn c/m được \(\Delta\)OHD ~ \(\Delta\)OIA  (g.g) => \(\frac{OH}{OI}=\frac{OD}{OA}\Rightarrow OH.OA=OI.OD\)(4)

Từ (3) và (4) => \(OM^2=OH.OA\)=> \(\frac{OM}{OA}=\frac{OH}{OM}\)

Xét \(\Delta\)OHM và \(\Delta\)OMA: \(\frac{OM}{OA}=\frac{OH}{OM}\); ^MOA chung => \(\Delta\)OHM ~ \(\Delta\)OMA (c.g.c)

=> ^OHM=^OMA. Ta có ^OHM=900 => ^OMA=900 => AM là tiếp tuyến của (O) (đpcm).

3) Ta có 5 điểm B,H,D,O,C cùng thuộc 1 đường tròn (cmt)

Suy ra Tứ giác BHOC và tứ giác DHOC nội tiếp đường tròn

Tứ giác BHOC nội tiếp đg tròn => ^ABH=^COH (Cùng bù ^HBC)

Dễ thấy ^BAH=^HDO (Cùng phụ ^DOA) (5)

Do tứ giác DHOC nôi tiếp đg tròn => ^HDO=^OCH (6)

Từ (5); (6) => ^BAH=^OCH

Xét \(\Delta\)AHB và \(\Delta\)CHO: ^ABH=^COH; ^BAH=^OCH => \(\Delta\)AHB ~ \(\Delta\)CHO (g,g)

\(\Rightarrow\)\(\frac{HB}{HO}=\frac{AH}{HC}\Rightarrow HB.HC=AH.HO\)(7)

Nhận thấy Đường tròn (O) có tiếp tuyến AM cố định (Do A cố định) 

Mà MH\(\perp\)AO tại H => H cố định => AH và HO có giá trị không đổi 

Nên AH.HO không đổi (8)

Từ (7) và (8) => HB.HC không đổi khi d quay quanh A (đpcm).

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

c: Xét (O) có 

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

Xét ΔBAD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)

hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có 

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{HAE}\) chung

Do đó: ΔAEH\(\sim\)ΔAOD

Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)

11 tháng 8 2017

a) A, B, C, D                 

b) G, H                

c) I, F

d) AB, CD

e) BE

10 tháng 4 2018

a) A, B, C, D         

b) G, H                

c) I, F

d) AB, CD

e) BE.

30 tháng 10 2018

a) A,M, B.

b) N, E.

c) Q, P.

d) MA, MB.

e) AB

28 tháng 12 2021

Chọn B

28 tháng 12 2021

b

28 tháng 6 2017

a) M, BN, C, D              

b) B, K                

c) A, I, G

d)  CN

e) MN

17 tháng 9 2019

a) M, BN, C, D

b) B, K                

c) A, I, G

d)  CN

e) MN.

1 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

OA =  2  < 2 nên điểm O và A nằm trong (A; 2)

AB = 2 nên điểm B nằm trên (A; 2)

AD = 2 nên điểm D nằm trên (A; 2)

AC = 2 2  > 2 nên điểm C nằm ngoài (A; 2)