Tìm một số có hai chữ số biết tổng bình phương hai chữ số của nó bằng 25, tích hai chữ số đó bằng 12. Pls help me!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số: 15
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số
15
Gọi số cần tìm là ab
Theo đề, ta có: a-b=7 và 10a+b=(a+b)^2
=>a=7+b và 10(b+7)+b=(2b+7)^2
=>4b^2+28b+49-11b-70=0 và a=b+7
=>b=1 và a=8
Gọi số tự nhiên cần tìm là \(\overline{ab}\left(a,b\in N;a\ne0\right)\)
Ta có \(b=a-7\)
Mặt khác: \(\overline{ab}=\left(a+b\right)^2\Rightarrow10a+b=\left(a+a-7\right)^2\)
\(\Rightarrow11a-7=\left(2a-7\right)^2\Rightarrow11a-7=4a^2-28a+49\)
\(\Rightarrow4a^2-39a+56=0\Rightarrow\left[{}\begin{matrix}a=1,75\left(L\right)\\a=8\left(TM\right)\end{matrix}\right.\)
Vậy số cần tìm là 81.
Gọi Tổng của hai số là S
Tích của hai số là P
Một số là x , số còn lại có S - x
Theo bài , ta có \(\hept{\begin{cases}S^2-2P=25\\P=12\end{cases}}\Rightarrow\hept{\begin{cases}S=7\\P=12\end{cases}}\)
Và Ta lập được phương sau
\(x^2-Sx+P=0\)
Ta có : \(\Delta=49-4.1.12=1\)
Suy ra \(x_1=\frac{7+\sqrt{1}}{2}=4\) ; \(x_2=\frac{7-\sqrt{1}}{2}=3\)
Vậy , các số thõa mãn đề bài là 43 và 34
Gọi số có hai chữ số đó là ab ( a;b \(\in\)N* ;0 < a < 10; 0\(\le\)b < 10 )
Ta thấy :
Tích của a và b là 12 => 12 \(⋮\)a và b.
Nếu có 1 trong 2 số > 5 thì tổng bình phương hai chữ số của số có hai chữ số đó lớn hơn 02 + 52 = 25 ( vô lý )
=> Hai số a và b \(\le\)5
Mà 12 \(⋮\)a và b nên ta có các trường hợp sau :
TH1 : a = 3; b = 4
=> a2 + b2 = 32 + 42 = 9 + 16 = 25 ( hợp lý )
=> ab = 34
TH2 : a = 4; b = 3
=> a2 + b2 = 42 + 32 = 16 + 9 = 25 ( hợp lý )
=> ab = 43.
Qua hai trường hợp => Số có hai chữ số đó là 34 hoặc 43.
Vậy số có hai chữ số đó là 34 hoặc 43.