Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+.....+\frac{1}{132}\)
\(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{11.12}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+......+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{4}\)
\(\frac{1}{12}\)+ \(\frac{1}{20}\)+ \(\frac{1}{42}\)+ .... + \(\frac{1}{132}\)
= \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+ \(\frac{1}{5.6}\)+ ... + \(\frac{1}{11.12}\)
= \(\frac{1}{3}\)- \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+ ... + \(\frac{1}{11}\)- \(\frac{1}{12}\)
= \(\frac{1}{3}\)- \(\frac{1}{12}\)
= \(\frac{1}{4}\)
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+.....+\frac{1}{132}\)
\(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{11.12}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{4}\)
1.\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{23}-\frac{4}{27}\)
\(=\frac{1}{3}-\frac{1}{27}=\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)
2. Đặt \(A=\frac{3}{14}+\frac{3}{84}+\frac{3}{204}+\frac{3}{374}+\frac{3}{594}+\frac{3}{864}\)
\(\Rightarrow A=\frac{3}{2.7}+\frac{3}{7.12}+...+\frac{3}{27.32}\)
\(\Rightarrow5A=3.\left(\frac{5}{2.7}+\frac{5}{7.12}+...+\frac{5}{27.32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{27}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(\Rightarrow5A=3.\frac{15}{32}=\frac{45}{32}\Rightarrow A=\frac{45}{32}:5=\frac{9}{32}\)
3. Đặt \(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{340}\)
\(\Rightarrow3S=\frac{3}{10}+\frac{3}{40}+...+\frac{3}{340}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{17.20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\Rightarrow S=\frac{9}{20}:3=\frac{3}{20}\)
Câu 1:
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
198 - 42 : 6 x y + 15 = 200
198 - 7 x y = 200 - 15
198 - 7 x y = 185
7 x y = 198 - 185
7 x y = 13
y = 13 : 7
y = 13/7
Vậy y = 13/7
(135-35).(-37)+37.(-42-58)
= 135-35.0.(-42)-58
=100.0.100
=0
(vì số nào nhân với 0 vẫn bằng 0)
CHÚC BẠN HỌC GIỎI.NĂM MỚI VUI VẺ , HẠNH PHÚC
TK MÌNH NHÉ
Ta có :
\(2x3y=42\)
\(\Rightarrow6xy=42\)
\(\Rightarrow xy=42:6\)
\(\Rightarrow xy=7\)
Do \(x;y\inℤ\)
\(\Rightarrow x;y\inƯ\left(7\right)\)
\(\Rightarrow x;y\in\left\{\pm1;\pm7\right\}\)
Ta có bảng sau :
\(x\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(y\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
Vậy \(\left(x,y\right)\in\left\{\left(1,7\right);\left(7,1\right);\left(-1,-7\right);\left(-7,-1\right)\right\}\)
~ Ủng hộ nhé
a. 3^6 : 3^2 + 2^3 . 2^ 2 = 3^ (6-3) + 2^(3+2) = 3^3 + 2^5= 27 + 32 =59
b. ( 39. 42 - 37.42) : 42 = [ 42. ( 39-37) ] :42 = 39 -37 = 2
= 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
= 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7=6/7
=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7