thực hiện phép tính
\(\frac{3}{\sqrt{3}}\)\(+\)\(\frac{2\sqrt{3}}{\sqrt{3}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{\sqrt{3}+1}-\frac{5}{\sqrt{3}-2}+\frac{6}{\sqrt{3}-3}=\frac{4\left(\sqrt{3}-1\right)}{2}+\frac{5\left(2+\sqrt{3}\right)}{4-3}+\frac{\sqrt{3}.2\sqrt{3}}{\sqrt{3}\left(1-\sqrt{3}\right)}\)
\(=2\sqrt{3}-2+10+5\sqrt{3}-\frac{2\sqrt{3}\left(\sqrt{3}+1\right)}{2}=7\sqrt{3}+8-3-\sqrt{3}=5+6\sqrt{3}\)
Ta có:
\(B=\frac{\sqrt{2+\sqrt{3}}}{2}\div\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{4+2\sqrt{3}}}{2}\div\left(\frac{\sqrt{4+2\sqrt{3}}}{2}-\frac{2\sqrt{3}}{3}+\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}\div\left(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}-\frac{2\sqrt{3}}{3}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{3}}\right)\)
\(B=\frac{\sqrt{3}+1}{2}\div\left(\frac{\sqrt{3}+1}{2}-\frac{2\sqrt{3}}{2}+\frac{\left(\sqrt{3}+1\right)\sqrt{3}}{6}\right)\)
\(B=\frac{\sqrt{3}+1}{2}\div\left[\frac{3\left(\sqrt{3}+1\right)-6\sqrt{3}+3+\sqrt{3}}{6}\right]\)
\(B=\frac{\sqrt{3}+1}{2}\div\frac{6-2\sqrt{3}}{6}\)
\(B=\frac{\sqrt{3}+1}{2}.\frac{6}{6-2\sqrt{3}}\)
\(B=\frac{3+2\sqrt{3}}{2}\)
b/ Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}.\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào bài toán ta được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{99}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Cả 2 câu là n tự nhiên khác 0 hết nhé
a/ Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Áp đụng vào bài toán được
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{1680}+\sqrt{1681}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{1681}-\sqrt{1680}\)
\(=\sqrt{1681}-\sqrt{1}=41-1=40\)