\(F=1-\frac{1}{2}\left(1+2\right)-\frac{1}{3}\left(1+2+3\right)-...-\frac{1}{101}\left(1+2+3+...+101\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{53}{101}.\frac{-13}{97}+\frac{53}{101}.\frac{-84}{97}\)
\(=\frac{53}{101}\left(\frac{-13}{97}+\frac{-84}{97}\right)\)
\(=\frac{53}{101}.\frac{-97}{97}\)
\(=\frac{53}{101}.\left(-1\right)\)
\(=\frac{-53}{101}\)
b) \(\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{1}{57}-\frac{1}{5757}\right).0\)
\(=0\)
c) \(\frac{3^2}{25}.\frac{75}{-21}.\frac{50}{35}\)
\(=\frac{3^2.75.50}{25.\left(-21\right).35}\)
\(=\frac{3.3.25.3.5.5.2}{25.3.\left(-7\right).5.7}\)
\(=\frac{3.3.5.2}{\left(-7\right).7}\)
\(=\frac{90}{-49}\)
d) \(\frac{25.48-25.18}{20.5^3}\)
\(=\frac{25\left(48-18\right)}{10.2.125}\)
\(=\frac{25.10.3}{10.2.25.5}\)
\(=\frac{3}{10}\)
Ta có: \(\left|x+\frac{1}{101}\right|\ge0\); \(\left|x+\frac{2}{101}\right|\) \(\ge0\); ...; \(\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow101x\ge0\)
và \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\); \(\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\); ...; \(\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)
Thay vào đề bài ta đc:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Rightarrow\) \(100x\) + \(\left(\frac{1+2+...+101}{101}\right)=101x\)
\(\Rightarrow100x+101=101x\)
\(\Rightarrow x=101\)
Vậy \(x=101.\)
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x (1)
điều kiện:101x\(\ge\) 0 \(\Rightarrow\) x\(\ge\) 0
từ (1) \(\Rightarrow\) \(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}\)=101x
\(\Rightarrow\) 100x+(\(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\))=101x
\(\Rightarrow\) 100x+\(\frac{5050}{101}\)=101x
\(\Rightarrow\) \(\frac{5050}{101}\)=101x-100x
\(\Rightarrow\) x=50
k bt mk lm sai hay lm đúng nữa
nếu mk lm sai thì thôi nha!
Nhận xét :
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
Vì \(x\ge0\) nên pt a) tương đương với : \(100x+\frac{1+2+3+...+100}{101}=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
b)
Tương tự câu a) , phương trình tương đương với :
\(49x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{...1}{97.99}=50x\)
\(\Rightarrow x=\frac{97}{195}\)
f=1-(2.3/4+3.4/6+...+101.102/202)
A=2.3/4+3.4/6+...+101.102/202)
2a=2.3/2+3.4/3+...+101.102/101
2a=3+4+...+102
2a=100.105/2
a=100.105/4
a=2625
f=1-2625
f=-(2624)