\(\left(\frac{1}{2}\right)^{x-1}+\left(\frac{1}{2}\right)^{x-4}=\frac{5}{4}.Tìmx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có:
4/3x - 1/3 = (2x-1) : 3/5
=> 4/3x -1/3 = (2x-1) * 5/3
=> 4/3x -1/3= 10/3x - 5/3
Chuyển vế đổi dấu
Ta được:
=> -2x = -4/3
=> x= 2/3
Vậy x= 2/3
\(1\frac{1}{3}x=\left(2x-1\right):\left(1-\frac{2}{5}\right)\)
\(\frac{4}{3}x=\left(2x-1\right):\left(\frac{3}{5}\right)\)
\(\frac{4}{3}x.\frac{3}{5}=\left(2x-1\right)\)
\(\frac{4}{5}x=\left(2x-1\right)\)
\(x=\left(2x-1\right):\frac{4}{5}\)
\(x=\left(2x-1\right).\frac{5}{4}\)
\(x=2x.\frac{5}{4}-1.\frac{5}{4}\)
\(x=\)\(2x.\frac{5}{4}-\frac{5}{4}\)
\(x=2.\frac{5}{4}.x-\frac{5}{4}\)
\(x=\left(\frac{5}{2}.x\right)-\frac{5}{4}\)
\(x=\frac{5}{2}-\frac{5}{4}.x-\frac{5}{4}\)
\(x=\frac{5}{4}.x-\frac{5}{4}\)
\(x=x\left(\frac{5}{4}-\frac{5}{4}\right)\)
\(x=x.0\)
\(=>x=0\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
= \(\frac{1}{x}\)
\(\left(2\frac{1}{3}+3\frac{1}{2}\right):\left(x+3\frac{1}{7}\right)+7\frac{1}{2}=1\frac{69}{86}\)
\(\left(\frac{7}{3}+\frac{7}{2}\right):\left(x+\frac{22}{7}\right)+\frac{15}{2}=\frac{155}{86}\)
\(\left(\frac{14}{6}+\frac{21}{6}\right):\left(x+\frac{22}{7}\right)+\frac{15}{2}=\frac{155}{86}\)
\(\frac{35}{6}:\left(x+\frac{22}{7}\right)=\frac{155}{86}-\frac{15}{2}\)
\(\frac{35}{6}:\left(x+\frac{22}{7}\right)=\frac{155}{86}-\frac{645}{86}\)
\(\frac{35}{6}:\left(x+\frac{22}{7}\right)=\frac{-245}{43}\)
\(x+\frac{22}{7}=\frac{35}{6}:\frac{-245}{43}=\frac{35}{6}\cdot\frac{-43}{245}\)
\(x+\frac{22}{7}=\frac{-43}{42}\)
\(x=\frac{-43}{42}-\frac{22}{7}=\frac{-43}{42}-\frac{132}{42}\)
\(x=\frac{-25}{6}\)
A= \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{2}{x+3}-...+\frac{8}{x+5}-\frac{8}{x+6}\)
A=\(\frac{1}{x+1}+\frac{1}{x+3}+\frac{2}{x+4}+\frac{4}{x+5}-\frac{8}{x+6}\)
Rồi tiếp tục làm nhé bạn.
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6
=1\x-1\x+6
=6\x(x+6)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)