Cho \(\Delta\)ABC vuông tại A, đường cao AH (H thuộc BC)
a/ Chứng minh \(\Delta ABC\)đồng dạng \(\Delta HBA\)
b/ Gọi I,K lần lượt là hình chiếu của H lên AB,AC. Chứng minh AI.AB = AK.AC
c/ Cho BC = 10cm, AH = 4cm. Tính diện tích \(\Delta AIK\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
BH=3,6(cm)
c: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
c: ΔACB vuông tại A
mà AH là đường cao
nên AH^2=HB*HC
d: ΔAHB vuông tại H có HI vuông góc AB
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2=AI*AB
a, bạn tự làm nhé
b, Xét tam giác ABH và tam giác CAH ta có
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH ( g.g )
\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)
c, mình làm hơi tắt nhé, bạn dùng tỉ lệ thức xác định tam giác đồng dạng nhé
Dễ có : \(AH^2=AK.AC\)(1)
\(AH^2=AI.AB\)(2)
Từ (1) ; (2) suy ra : \(AK.AC=AI.AB\Rightarrow\frac{AK}{AB}=\frac{AI}{AC}\)
Xét tam giác AIK và tam giác ACB
^A _ chung
\(\frac{AK}{AB}=\frac{AI}{AC}\)( cmt )
Vậy tam giác AIK ~ tam giác ACB ( c.g.c )
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:
\(AI\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:
\(AK\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)
hay \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Xét ΔAIK vuông tại A và ΔACB vuông tại A có
\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)(cmt)
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)
a. Xét ΔABC và ΔHBA :
\(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)
b. Xét ΔABC vuông tại A
Theo định lý Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
\(\Rightarrow\) BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Ta có: ΔABC \(\sim\) ΔHBA
\(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) AH = 13,3 cm
\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) BH = 10 cm
c. Xét ΔAIH và ΔBAC :
\(\widehat{AIH}\) = \(\widehat{BAC}\) = 900
Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\) (phụ thuộc \(\widehat{HAC}\) )
\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)
\(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\)
\(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)
\(\Rightarrow\) AI . AB = AK. AC(đpcm)
a) Xét ΔABC và ΔHBA ta có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
⇒ΔABC∼ ΔHBA
b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:
\(BC^2=AB^2+AC^2\)
\(=6^2+8^2\)
\(=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì ΔABC ∼ ΔBHA(cmt)
\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)
Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)
\(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)
a) Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
suy ra: \(\Delta ABC~\Delta HBA\) (g.g)
b) Xét \(\Delta AIH\)và \(\Delta AHB\)có:
\(\widehat{AIH}=\widehat{AHB}=90^0\)
\(\widehat{IAH}\) chung
suy ra: \(\Delta AIH~\Delta AHB\) (g.g)
\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\) \(\Rightarrow\) \(AI.AB=AH^2\) (1)
Xét \(\Delta AHK\)và \(\Delta ACH\)có:
\(\widehat{HAK}\)chung
\(\widehat{AKH}=\widehat{AHC}=90^0\)
suy ra: \(\Delta AHK~\Delta ACH\) (g.g)
\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)
\(\Rightarrow\)\(AK.AC=AH^2\) (2)
Từ (1) và (2) suy ra: \(AI.AB=AK.AC\)
c) \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2
Tứ giác \(HIAK\)có: \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)
\(\Rightarrow\)\(HIAK\)là hình chữ nhật
\(\Rightarrow\)\(AH=IK=4\)cm
Ta có: \(AI.AB=AK.AC\) (câu b)
\(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)
Xét \(\Delta AIK\)và \(\Delta ACB\)có:
\(\widehat{IAK}\)chung
\(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)
suy ra: \(\Delta AIK~\Delta ACB\) (c.g.c)
\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)
\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2