K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Từ \(a^2+b^2+c^2=1\) , ta có thể suy ra rằng \(\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\)

Ta Có \(a^2-a^3+b^2-b^3+c^2-c^3=0\)

<=> \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)

Nhận thấy \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)

Nên suy ra \(\hept{\begin{cases}a\left(1-a\right)=0\\b\left(1-b\right)=0\\c\left(1-c\right)=0\end{cases}}\) Vậy tồn tại trong ba số a,b,c có một số bằng 1 

Kết hợp Với \(a^2+b^2+c^2=1\)

Suy ra hai số còn lại bằng 0

Vậy \(a+b^2+c^3=1\)

12 tháng 5 2018

\(\Leftrightarrow\left(a^3+b^3+c^3\right)-\left(a^2+b^2+c^2\right)=0\)

\(\Leftrightarrow\left(a^3-a^2\right)+\left(b^3-b^2\right)+\left(c^3-c^2\right)=0\)

\(\Leftrightarrow a.\left(a^2-1\right)+b.\left(b^2-1\right)+c.\left(c^2-1\right)=0\)

Vì \(a.\left(a^2-1\right)\ge0;b.\left(b^2-1\right)\ge0;c.\left(c^2-1\right)\ge0\)

\(\Rightarrow a.\left(a^2-1\right)=0;b.\left(b^2-1\right)=0;c.\left(c^2-1\right)=0\)

\(\hept{\begin{cases}a.\left(a^2-1\right)=0\\b.\left(b^2-1\right)=0\\c.\left(c^2-1\right)=0\end{cases}\Rightarrow\hept{\begin{cases}a=0;\pm1\\b=0;\pm1\\c=0;\pm1\end{cases}}}\)

rồi bn tings bốt hộ mk

mk mới lớp 6 lên cứ làm bừa

mk giải nhì toán leenbuafw thôi

11 tháng 3 2018

Giải nhanh nha! mình sẽ k cho.

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

21 tháng 6 2020

\(a^2+b^2+c^2=1\Rightarrow-1\le a;b;c\le1\text{ ta có:}\)

\(a^2-a^3+b^2-b^3+c^2-c^3=a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\Rightarrow\text{ 1 số bằng 1; 2 số bằng 1}\)

do đó:a+b2+c3=1

21 tháng 6 2020

\(\hept{\begin{cases}a^2+b^2+c^2=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}}\)

Ta có: ( 1) => \(a^2\le1;b^2\le1;c^2\le1\) => \(-1\le a\le1;-1\le b\le1;-1\le c\le1\)

=> \(\left(a-1\right)\le0;\left(b-1\right)\le0;\left(c-1\right)\le0\)

<=> \(a^2\left(a-1\right)\le0;b^2\left(b-1\right)\le0;c^2\left(c-1\right)\le0\)

Lấy (2) - (1) ta có: \(a^3-a^2+b^3-b^2+c^3-c^2=0\)

<=> \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)(1)

TH1) Tồn tại ít nhất 1 số trong 3 số: \(a^2\left(a-1\right);b^2\left(b-1\right);c^2\left(c-1\right)< 0\)

=> vô lí 

Th2) Cả 3 số bằng 0 

(1) <=> \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)

Mặt khác \(a^2+b^2+c^2=1\)

Do đó chỉ có các nghiệm: ( 1; 0; 0) hoặc (0; 0; 1) hoặc ( 0; 1; 0 ) thỏa mãn

Vậy tổng a + b^2 + b^3 = 1

15 tháng 2 2018

ha ha hah hahahahha

19 tháng 2 2018

Đã không trả lời lại còn cười! 

17 tháng 3 2019

Ta có:

\(a^3+b^3+c^3=3abc\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Do a+b+c khác ) nên:

\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\frac{1}{2}[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]=0\)

\(\Rightarrow a=b=c\)

Do đó:

Q=\(\frac{a^2+3b^2+5c^2}{\left(a+b+c\right)^2}=\frac{9a^2}{9a^2}=1\)

có giá trị ko đổi

9 tháng 10 2020

Ta có: \(ab+bc+ca=\frac{\left(a+b+c\right)^2-a^2-b^2-c^2}{2}=0\)

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\)

\(\Rightarrow abc=0\)

Từ đó ta có hpt\(\hept{\begin{cases}a+b+c=1\\ab+bc+ca=0\\abc=0\end{cases}}\). Theo định lý Viet suy ra a,b,c là các nghiệm của \(x^3-x^2=0\Leftrightarrow x.x\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

\(\Rightarrow\left(a,b,c\right)=\left(1,0,0\right)\)và các hoán vị

Khi đó: \(a^{2019}+b^{2020}+c^{2021}=1\)