Cho tam giác ABC, M là trung điểm của BC, N là trung điểm của AC. lấy điểm E đối xứng với điểm M qua điểm N. I là trung điểm của AM. Chứng minh:
a, tứ giác ADCM là hình gì
b, Chứng minh ba điểm B,I,D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
N là trung điểm của AC
M là trung điểm của BC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//AB
hay ABMN là hình thang
a: Xét tứ giác AEMD có
AE//MD
AD//ME
Do đó: AEMD là hình bình hành
a: Xét tứ giác ADCM có
N là trung điểm của AC
N là trung điểm của DM
Do đó: ADCM là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên ADCM là hình chữ nhật
a) Xét ΔABC có
K là trung điểm của AB(gt)
I là trung điểm của AC(gt)
Do đó: KI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
nên KI//BC và \(KI=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
Xét tứ giác BKIC có KI//BC(cmt)
nên BKIC là hình thang có hai đáy là KI và BC(Định nghĩa hình thang)
Hình thang BKIC(KI//BC) có \(\widehat{KBC}=\widehat{ICB}\)(hai góc ở đáy của ΔABC cân tại A)
nên BKIC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
b) Xét ΔABC cân tại A có AM là đường trung tuyến ứng với cạnh đáy BC(gt)
nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)
\(\Leftrightarrow AM\perp BC\)
hay \(\widehat{AMC}=90^0\)
Xét tứ giác AMCN có
I là trung điểm của đường chéo AC(gt)
I là trung điểm của đường chéo MN(M và N đối xứng nhau qua I)
Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(cmt)
nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Ta có: AMCN là hình chữ nhật(cmt)
nên AN//MC và AN=MC(Hai cạnh đối trong hình chữ nhật AMCN)
mà B\(\in\)MC và MB=MC(M là trung điểm của BC)
nên AN//BM và AN=BM
Xét tứ giác ANMB có
AN//BM(cmt)
AN=BM(cmt)
Do đó: ANMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
nên Hai đường chéo AM và BN cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(1)
Xét ΔABC có
K là trung điểm của AB(gt)
M là trung điểm của BC(Gt)
Do đó: KM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
nên KM//AC và \(KM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà I\(\in\)AC và \(AI=\dfrac{AC}{2}\)(I là trung điểm của AC)
nên KM//AI và KM=AI
Xét tứ giác AIMK có
KM//AI(cmt)
KM=AI(cmt)
Do đó: AIMK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
nên Hai đường chéo AM và KI cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(2)
Từ (1) và (2) suy ra AM,BN và IK đồng quy(đpcm)
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của EM
Do đó: AEBM là hình bình hành