cho x+y = 1 tìm gtnn của biểu thức 3x2+3y2+ 2018
9xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
E = 2 x 3 – 2 y 3 – 3 x 2 – 3 y 2 = 2 ( x 3 – y 3 ) – 3 ( x 2 + y 2 ) = 2 ( x – y ) ( x 2 + x y + y 2 ) – 3 ( x 2 + y 2 )
Vì x – y = 1 nên
E = 2 ( x 2 + y 2 + x y ) – 3 x 2 – 3 y 2 = - ( x 2 – 2 x y + y 2 ) = - ( x – y ) 2 = - 1
Đáp án cần chọn là: A
Ta có:
\(M=x^2-2x\left(y+1\right)+3y^2+2025\)
\(M=x^2-2\cdot x\cdot\left(y+1\right)+\left(y+1\right)^2+3y^2+2025-\left(y+1\right)^2\)
\(M=\left[x-\left(y+1\right)\right]^2+3y^2+2025-y^2-2y-1\)
\(M=\left(x-y-1\right)^2+2y^2-2y+2024\)
\(M=\left(x-y-1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{4047}{2}\)
Mà: \(\left\{{}\begin{matrix}\left(x-y-1\right)^2\ge0\\2\left(y-\dfrac{1}{2}\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow M=\left(x-y-1\right)^2+2\left(y-\dfrac{1}{2}\right)^2+\dfrac{4047}{2}\ge\dfrac{4047}{2}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-y-1=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}+1\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy GTNN của M là ....
\(A+B=7x^2-3xy+2y^2\)
\(A-B=x^2-7xy+4y^2\)
Bài 2
\(C+D=-x^2y+4xy+6x-3\)
\(C-D=9x^2y-14xy+19\)
Ta có: \(A=\left(x+y\right).1=\left(x+y\right).\left(\frac{2017}{x}+\frac{2018}{y}\right)=2017+2018.\frac{x}{y}+2017.\frac{y}{x}+2018\)
\(\Leftrightarrow A=4035+2017\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{x}{y}\ge4035+2017.2+\frac{x}{y}\)
\(\Leftrightarrow A\ge8069+\frac{x}{y}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{x}{y}=\frac{y}{x}\Leftrightarrow x^2=y^2\Leftrightarrow x=y=4035\)( thỏa đề bài )
\(\Leftrightarrow minA=8069+1=8070\)