Giải BPT:
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}< \frac{2}{1+ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin phép bỏ biểu diễn trên trục :))
a) \(2x-1< 2\left(x-1\right)\)
\(\Leftrightarrow2x-1< 2x-2\)
\(\Leftrightarrow2x-2x< 1-2\)
\(0x< -1\)( vô lí )
Vậy bất phương trình vô nghiệm.
b) \(\frac{x-1}{3}-\frac{2+3x}{4}>\frac{1}{6}\)
\(\Leftrightarrow\frac{4\left(x-1\right)-3\left(2+3x\right)}{12}>\frac{2}{12}\)
\(\Leftrightarrow4x-4-6-9x>2\)
\(\Leftrightarrow-5x-10>2\)
\(\Leftrightarrow-5x>12\)
\(\Leftrightarrow x< \frac{-12}{5}\)
Vậy...........
b, \(\frac{5x+1}{x+3}-\frac{3x-2}{x-1}=\frac{5.\left(x+3\right)-14}{x+3}-\frac{3\left(x-1\right)+1}{x-1}=5-\frac{14}{x+3}-3+\frac{1}{x-1}=2+\left(\frac{1}{x-1}-\frac{14}{x+3}\right)=2+\left(\frac{x+3-14x+14}{x^2-x+3x-3}\right)=2+\left(\frac{17-13x}{x^2+2x-3}\right)>2\)
a. (x+4)(\(\frac{1}{4}\)x-1)=0
=>[\(\begin{matrix}x+4=0\\\frac{1}{4}x-1=0\end{matrix}\)
=>[\(\begin{matrix}x=-4\\\frac{1}{4}x=1\end{matrix}\)
=>[\(\begin{matrix}x=-4\left(n\right)\\x=4\left(n\right)\end{matrix}\)
S={-4;4}
b.
⇔\(\frac{x^2+4x+4}{x^2-4}\) -\(\frac{x^2-4x+4}{x^2-4}\) =\(\frac{4}{x^2-4}\)
=>\(x^2+4x+4-x^2+4x-4-4=0\)
⇔ 8x - 4=0
⇔x=\(\frac{1}{2}\) (n)
S=\(\left\{\frac{1}{2}\right\}\)
c.
=>2x-10< 5x+5
=>-3x <15
=> x > 5 (n)
{x/x>5}
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
a,\(2x\left(x-3\right)=x-3.\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy .....
b, \(\frac{x+2}{x-2}-\frac{5}{x}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow\frac{\left(x+2\right)\cdot x}{\left(x-2\right)\cdot x}-\frac{5\left(x-2\right)}{x\left(x-2\right)}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow\frac{x^2+2x-\left(5x-10\right)}{\left(x-2\right)x}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow\frac{x^2+2x-5x+10}{x^2-2x}=\frac{8}{x^2-2x}\)
\(\Leftrightarrow x^2+2x-5x+10=8\)
\(\Leftrightarrow x^2-3x+10-8=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy ....
PT \(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)-\left(\frac{1}{1+ab}-\frac{1}{1+b^2}\right)< 0\)
\(\Leftrightarrow\frac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}-\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}< 0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}-\frac{b\left(b-a\right)}{\left(1+b^2\right)\left(1+ab\right)}< 0\)
\(\Leftrightarrow\frac{b-a}{1+ab}\left(\frac{a}{1+a^2}-\frac{b}{1+b^2}\right)< 0\)
\(\Leftrightarrow\frac{b-a}{1+ab}.\frac{a+ab^2-b-a^2b}{\left(1+a^2\right)\left(1+b^2\right)}< 0\)
\(\Leftrightarrow\frac{b-a}{ab+a}.\frac{\left(ab-1\right)\left(b-a\right)}{\left(1+a^2\right)\left(1+b^2\right)}< 0\\\)
\(\Leftrightarrow\frac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(ab+1\right)}< 0\)
vì \(\left(b-a\right)^2\ge0;\left(1+a^2\right),\left(1+b^2\right)>0\)
\(\Leftrightarrow\frac{ab-1}{ab+1}< 0\left(vớia\ne b\right)\)
vì \(ab-1< ab+1\)
\(\Leftrightarrow\hept{\begin{cases}ab-1< 0\\ab+1>0\end{cases}\Leftrightarrow-1< ab< 1}\)
Vậy nghiệm của PT là \(-1< ab< 1\) và \(a\ne b\)
Áp dụngbdt bunhiacopki (a2+b2)(x2+y2)>=(ax+by)2