Cho 3 số thực x,y,z thỏa mãn 2x+2y+z=4.Tìm GTLN của biểu thức:A=2xy+yz+zx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+2y+z=4\Rightarrow z=4-2x-2y\)
Ta có: \(A=2xy+yz+xz\)
\(=2xy+y\left(4-2x-2y\right)+x\left(4-2x-2y\right)\)
\(=2xy+4y-2xy-2y^2+4x-2x^2-2xy\)
\(=4y-2xy-2y^2+4x-2x^2\)
\(\Rightarrow2A=8y-4xy-4y^2+8x-4x^2\)
\(=-4x^2-4x\left(y-2\right)-4y^2+8y\)
\(=-4x^2-2.x.2\left(y-2\right)-\left(y-2\right)^2+\left(y-2\right)^2-4y^2+8y\)
\(=-\left[4x^2+2.x.2\left(y-2\right)+\left(y-2\right)^2\right]+\left(y-2\right)^2-4y^2+8y\)
\(=-\left(2x+y-2\right)^2+y^2-4y+4-4x^2+8y\)
\(=-\left(2x+y-2\right)^2-3y^2+4y+4\)
\(=-\left(2x+y-2\right)^2-3\left(y^2-2.\frac{2}{3}y+\frac{4}{9}-\frac{4}{9}-\frac{4}{3}\right)\)
\(=-\left(2x+y-2\right)^2-3\left(y-\frac{2}{3}\right)^2+\frac{16}{3}\)
\(=\frac{16}{3}-\left[\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2\right]\)
Vì \(\left(2x+y-2\right)^2\ge0;\left(y-\frac{2}{3}\right)^2\ge0\) Nên \(\frac{16}{3}-\left[\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2\right]\le\frac{16}{3}\)
\(\Rightarrow A\le\frac{16}{3}:2=\frac{8}{3}\)
Dấu "=" xảy ra <=>\(\hept{\begin{cases}y-\frac{2}{3}=0\\2x+y-2=0\\z=4-2x-2y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-y+2}{2}\\y=\frac{2}{3}\\z=4-2x-2y\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{2}{3}\\z=\frac{4}{3}\end{cases}}}\)
Vậy AMax = 8/3 khi và chỉ khi x = y = 2/3 và z = 4/3
2x + 2y + z = 4(1)
A = 2xy + yz + xz(2)
(1) z=2c<=>x+y=2-c($)
(2)<=>2xy+2yc+2cx=A
A=2B<=>xy +(x+y).c=B
xy=B-c(2-c)
($:%)=> ton tai nghiem x,y
(c-2)^2≥4[B+c(c-2)]
c^2-4c+4≥4B+4c^2-8c
-3c^2+4c≥4B-4
-3(c^2-2.2/3c+4/9)≥4B-4-4/3
-3(c-2/3)^2≥4B-16/3
=> B≤4/3
A≤8/3
dang thuc khi c=2/3; z=1/3
x=y=2/3
A=2xy+yz+xzA=2xy+yz+xz
=2xy+y(4−2x−2y)+x(4−2x−2y)=2xy+y(4−2x−2y)+x(4−2x−2y)
=−2x2−2xy+4x−2y2+4y=−2x2−2xy+4x−2y2+4y
=[−(x2+2xy+y2)+83(x+y)−169]−(x2−43x+49)−(y−43y+49)+83=[−(x2+2xy+y2)+83(x+y)−169]−(x2−43x+49)−(y−43y+49)+83=−(x+y−43)2−(x−23)2−(y−23)2+83≤83=−(x+y−43)2−(x−23)2−(y−23)2+83≤83
Vậy Amax=83Amax=83 tại
\(z=4-2x-2y\)
\(\Rightarrow A=2xy+y\left(4-2x-2y\right)+x\left(4-2x-2y\right)\)
\(A=-2y^2+4y-2x^2+4x-2xy\)
\(A=-2\left(x^2+\frac{y^2}{4}+1+xy-2x-y\right)-\frac{3}{2}\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{8}{3}\)
\(A=-2\left(x+\frac{y}{2}-1\right)^2-\frac{3}{2}\left(y-\frac{2}{3}\right)^2+\frac{8}{3}\le\frac{8}{3}\)
\(\Rightarrow A_{max}=\frac{8}{3}\) khi \(\left\{{}\begin{matrix}x=\frac{2}{3}\\y=\frac{2}{3}\\z=\frac{4}{3}\end{matrix}\right.\)
\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)
\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)
\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)
Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)
\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)
Tương tự ta được
\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)
\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :
\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)
\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)
\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)