K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

         \(A=\frac{x^2}{x^4+x^2+1}\)

\(\Rightarrow\)\(3A=\frac{3x^2}{x^4+x^2+1}=\frac{x^4+x^2+1-x^4+2x^2-1}{x^4+x^2+1}\)

                 \(=\frac{\left(x^4+x^2+1\right)-\left(x^2-1\right)^2}{x^4+x^2+1}=1-\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\le1\) 

\(\Rightarrow\)\(A\le\frac{1}{3}\)

Dấu  "=" xảy ra  \(\Leftrightarrow\)\(x=\pm1\)

Vậy  Max A = 1/3  <=>  \(x=\pm1\)

4 tháng 11 2017
Đừng bumhiacopski chủ giá
28 tháng 10 2021

Bài 8:

\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)

28 tháng 10 2021

Bài 9:

\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)

AH
Akai Haruma
Giáo viên
8 tháng 3 2023

Lời giải:
$x^4\geq 0$ với mọi $x$

$\Rightarrow x^4+1\geq 1$

$\Rightarrow (x^4+1)^2\geq 1$

$\Rightarrow (x^4+1)^2+2021\geq 1+2021=2022$

Vậy GTNN của biểu thức là $2022$. Giá trị này đạt tại $x=0$