có tồn tại các số nguyên a,b,c thỏa mãn tất cả các điều kiện sau hay không:
abc+a= -625
abc+c =-633
abc+c= -597
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thành Long - Toán lớp 6 - Học toán với OnlineMath nhấn vào dòng chữ xanh
Ta đã biết: Các số nguyên dương cộng nhau sẽ ra số nguyên dương
Ta có:
1: abc + a = (-625) (abc và a đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
2: abc + b = (-633) (abc và b đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
3: abc + c = (-597) (abc và c đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ \(\Rightarrow\) a; b; c đều là số lẻ \(\Rightarrow\) a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
Bài này mình làm rồi :
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
Bấn vào dòng chữ màu xanh này, có bài này mình làm rồi Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bài này mình làm rồi :
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
ko phải dạng vừa đâu!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
không
Giả sử có tồn tại các số nguyên a,b,c thỏa mãn điều kiện của đề bài .Khi đó ta có :
a(bc+1)=-625
b(ac+1)=-633
c(ab+1)=-597
Nói riêng a,b,c là các số lẻ.Vậy tích abc cũng phải là một số lẻ và do đó -625=abc+a là một số chẵn (vô lí).Vậy không tồn tại các số nguyên a,b,c thỏa mãn đề bài.