cho B=1+2+3+...+n=\(\overline{aaa}\).Tìm n và a thỏa mãn bài toán
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ 1; 2; ………; n có n số hạng
Suy ra 1 +2 +…+ n
Mà theo bài ra ta có 1 +2 +3+…..+n =
Suy ra = a . 111 = a . 3.37
Suy ra: n(n + 1) = 2.3.37.a
Vì tích n(n + 1) chia hết cho số nguyên tố 37 nên n hoặc n + 1 chia hết cho 37
Vì số có 3 chữ số suy ra n+1 < 74 n = 37 hoặc n + 1 = 37
+) Với n = 37 thì (không thỏa mãn )
+) Với n + 1 = 37 thì ( thoả mãn)
Vậy n =36 và a = 6. Ta có: 1+2+3+…..+ 36 = 666
Dấu . là dấu nhân nha
1 + 2 + 3 + ... + n = \(\overline{aaa}\)
Ta có : 1 + 2 + 3 + ... + n là dãy số cách đều mỗi số cách nhau 1 đơn vị
Nên : 1 + 2 + 3 + ... + n = \(\frac{\left(n+1\right)n}{2}\)
n ( n + 1 ) : 2 = \(\overline{aaa}\)
n ( n + 1 ) = a . 222
n ( n + 1 ) = 37 . 2 . 3 . a
n ( n + 1 ) = 37 . \(\overline{6a}\)
Mà : n ( n + 1 ) là tích của hai số tự nhiên liên tiếp
Mà : 100 < 37 . \(\overline{6a}\) < 1000 => 6a = 36 => a = 36 : 6 = 6 .
Vậy số tự nhiên n là 36 thì thỏa mãn : 1 + 2 + 3 + ... + 36 = 666
1 + 2 + 3 + ... + n = aaa
=> (1 + n).n:2 = a.111
=> (1 + n).n = a.3.37.2
=> (1 + n).n = a.6.37
Do (n + 1).n là tích 2 số tự nhiên liên tiếp mà a là chữ số nên a = 6
=> n = 6.6 = 36
Vậy n = 36
1 + 2 + 3 + ... + n = aaa
n x ( n + 1 ) : 2 = a x 111
n x ( n + 1 ) : 2 = a x 3 x 37
n x ( n + 1 ) = a x 3 x 37 x 2
n x ( n + 1 ) = a x 6 x 37
Mà tích của n x ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên a x 6 x 37 là tích của hai số tự nhiên liên tiếp .
Để a x 6 x 37 là tích của hai số tự nhiên liên tiếp thì a = 6 để a x 6 x 37 = 6 x 6 x 37 = 36 x 37
=> aaa = 666
Vậy n x ( n + 1 ) = 666 x 2 = 1332
Vì 36 x 37 = 1332 nên n = 36
đáp số : a = 6 ; n = 36
Nhớ k cho mình nha !!!
Chúc mừng năm mới :))
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
1 + 2 + 3 + ... + n = \(\overline{aaa}\)
=> ( n + 1 ) x n : 2 = 3 x 37 x a
=> n x ( n + 1 ) = 6a x 37
Vì n x ( n + 1 ) là tích 2 số liên tiếp nên 6a x 37 là tích 2 số tự nhiên liên tiếp
=> 6a = 36
=> a = 6 ( vì a \(\in\) N )
Do đó n x ( n + 1 ) = 36 x 37
=> n = 36 ( vì n \(\in N\)*)
Vậy n = 36; a = 6
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$