K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a n.n.n+5n chia het cho 6

25 tháng 7 2018

a, n^3 +5n

= n^3 -n+ 6n

= n(n^2-1)+ 6n

=n(n-1)(n+1) +6n

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6

Mặt khác, 6n chia hết cho 6.

Suy ra: n(n-1)(n+1) +6n chia hết cho 6

Vậy n^3 + 5n chia hết cho 6

b, n^3 *19n ko chia hết cho 6 được.Bạn nên xem lại đề bài xem có đúng ko.

c, 5n^3 + 15n^2 +10n

= 5n(n^2 +3n+2)

= 5n(n+1)(n+2)

n(n+1)(n+2) chia hết cho 6 nên 5n^3 +15n^2 +10n chia hết cho 6

Chúc bạn học tốt.

13 tháng 10 2017

Ta có: n^5 - n = n (n^4 -1 ) 
=n (n^2-1)(n^2+1) 
=n(n-1)(n+1)(n^2 - 4 +5) 
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5 
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30 
và n(n-1)(n+1)5 chia hết cho 30 
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30 
hay n^5-n chia hết cho 30

23 tháng 10 2018

Ta có :

\(5n^3+15n^2+10\)

= \(5n.\left(n^2+3n+2\right)\)

= \(5n.\left(n^2+n+2n+2\right)\)

=\(5n.\left(n.\left(n+1\right)+2.\left(n+1\right)\right)\)

=5n.\(\left(n+1\right).\left(n+2\right)\)

Vì n.(n+1).(n+2) lac tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n.(n+1).(n+2) chia hết cho 6

=> 5.(n+1).(n+2) chia hết cho 30

Hay \(5n^3+15n^2+10n\) chia hết cho 30

\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)\)

\(=5n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)

hay \(5n\left(n+1\right)\left(n+2\right)⋮30\)

15 tháng 10 2017

Trước tiên bn nên phân tích đa thức thành nhân tử để dễ dàng chứng minh hơn

Ta có: \(A=5n^3+15n^2+10n=5n^3+5n^2+10n^2+10n\)\(=5n^2\left(n+1\right)+10n\left(n+1\right)=\left(n+1\right)\left(5n^2+10n\right)\)\(=5.n\left(n+1\right)\left(n+2\right)\)

Do \(n\left(n+1\right)\left(n+2\right)⋮6\) \((\forall n\in Z)\) (bn tự cm)

\(\Rightarrow A\) \(⋮30\left(\forall n\in Z\right)\)

16 tháng 10 2017

thiếu nhé

vì UCLN(5,6)=1 nên A chia hết cho 5.6=30

8 tháng 7 2016

\(5n^3+15n^2+10n\)

\(=\left(5n^3+5n^2\right)+\left(10n^2+10n\right)\)

\(=5n^2\left(n+1\right)+10n\left(n+1\right)\)

\(=n\left(n+1\right)\left(5n+10\right)\)

\(=n\left(n+1\right)\left(n+2\right).5\)

Vì \(n\left(n+1\right)\left(n+2\right)\)là tích 3 số tự nhiên liên tiếp nên chia hết cho 6; tức tích \(n\left(n+1\right)\left(n+2\right).5\)chia hết cho 6.

Tích \(n\left(n+1\right)\left(n+2\right).5\) thừa số 5 nên chia hết cho 5.

Mà ƯCLN ( 5;6) = 1 nên \(n\left(n+1\right)\left(n+2\right).5\)chia hết cho 5.6 = 30

Vậy \(5n^3+15n^2+10n\)chia hết cho 30

\(b=\left(n^2-n\right)\left(n+1\right)\)

\(=\left(n\cdot n-n\cdot1\right)\left(n+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)

Vì n-1;n;n+1 là ba số nguyên liên tiếp

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!\)

=>b chia hết cho 6

\(c=5n^2+5n\)

\(=5n\cdot n+5n\cdot1\)

\(=5n\left(n+1\right)\)

n;n+1 là hai số nguyên liên tiếp

=>\(n\left(n+1\right)⋮2\)

=>\(c=5\cdot n\cdot\left(n+1\right)⋮5\cdot2=10\)

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

10 tháng 10 2017

5n3 + 15n2 + 10n

= 5n(n2 + 3n + 2)

= 5n(n2 + n + 2n + 2)

= 5n[n(n + 1) + 2(n + 1)]

= 5n(n + 1)(n + 2)

Ta phân tích : 30 = 2 . 3 . 5

Ta thấy biểu thức trên chia hết cho 5 và là tích giữa số 5 với 3 số liên tiếp. (1)

Mà 3 số liên tiếp luôn luôn chia hết cho 6. Suy ra 3 số liên tiếp cũng chia hết cho 2 và 3 (2)

Từ (1) và (2) suy ra tích trên chia hết cho 2,3,5

Vậy biểu thức trên chia hết cho 30.

18 tháng 7 2016

Ta có:

5n3 + 15n2 + 10n

= 5n.(n2 + 3n + 2)

= 5n.(n2 + n + 2n + 2)

= 5n.[n.(n + 1) + 2.(n + 1)]

= 5n.[(n + 1).(n + 2)]

= 5.n.(n + 1).(n + 2)

Vì n.(n + 1).(n + 2) là tích 3 số tự nhiên liên tiếp nên n.(n + 1).(n + 2) chia hết cho 2 và 3

Mà (2;3)=1 => n.(n + 1).(n + 2) chia hết cho 6

=> 5.n.(n + 1).(n + 2) chia hết cho 30

=> 5n3 + 15n2 + 10n chia hết cho 30 (đpcm)

18 tháng 7 2016

\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]=5n\left(n+1\right)\left(n+2\right)\)

thấy n (n + 1) (n + 2) là tích 3 số nguyên liên tiếp

=> có 1 số chia hết cho 2     ( n(n+1) tích 2 số liên tiếp )

=> có 1 số chia hết cho 3     ( n(n+1)(n+2) là tích 3 số liên tiếp)

=>  n(n+1)(n+2) chia hết cho 2.3  =>  n(n+1)(n+2) chia hết cho 6

=> 5n(n+1)(n+2) chia hết cho 30  (đpcm)