K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

\(3+\frac{1}{4+\frac{1}{b+\frac{1}{6}}}=\frac{421}{130}\) \(\Rightarrow\frac{1}{4+\frac{1}{b+\frac{1}{6}}}=\frac{31}{130}\Rightarrow4+\frac{1}{b+\frac{1}{6}}=\frac{130}{31}\Rightarrow\frac{1}{b+\frac{1}{6}}=\frac{6}{31}\Rightarrow b+\frac{1}{6}=\frac{31}{6}\Rightarrow b=\frac{30}{6}=5\)

Vậy b = 5

3 tháng 2 2016

đề thiếu

12 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0;x\ne2\\x\ne-1\end{cases}}\)

\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(\Leftrightarrow Q=1+\left(\frac{x+1}{x^3+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right):\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)

\(\Leftrightarrow Q=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{x\left(x-2\right)}{x^2-x+1}\)

\(\Leftrightarrow Q=1+\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)

\(\Leftrightarrow Q=1+\frac{-2x^2+4x}{x\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow Q=1+\frac{-2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow Q=1+\frac{-2}{x+1}\)

\(\Leftrightarrow Q=\frac{x-1}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(ktm\right)\\x=-\frac{1}{2}\left(tm\right)\end{cases}}\)

Thay \(x=-\frac{1}{2}\)vào Q, ta được :

\(Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}\)

\(\Leftrightarrow Q=\frac{-\frac{3}{2}}{\frac{1}{2}}\)

\(\Leftrightarrow Q=-3\)

c) Để \(Q\inℤ\)

\(\Leftrightarrow x-1⋮x+1\)

\(\Leftrightarrow x+1-2⋮x+1\)

\(\Leftrightarrow2⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)

Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)

15 tháng 6 2017

Theo đề ra ,ta có :

    - 1 / 12 < x < 1 / 8 mà x có giá trị nguyên 

=> x = 0

13 tháng 11 2018

a) \(ĐKXĐ:\hept{\begin{cases}x^3+1\ne0\\x^3-2x^2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne2\end{cases}}\)(chỗ chữ và là do OLM thiếu ngoặc 4 cái nên mk để thế nha! trình bày thì kẻ thêm 1 ngoặc nưax)

\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(=1+\left[\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)

\(=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)

\(=1+\frac{4x-2x^2}{x+1}.\frac{1}{x\left(x-2\right)}\)

\(=1-\frac{2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)

b, Với \(x\ne0;x\ne-1;x\ne2\)Ta có:

\(|x-\frac{3}{4}|=\frac{5}{4}\)

*TH1: 

\(x-\frac{3}{4}=\frac{5}{4}\Rightarrow x=2\)(ko thảo mãn)

*TH2:

\(x-\frac{3}{4}=-\frac{5}{4}\Rightarrow x=-\frac{1}{2}\)

\(\Rightarrow Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)

c,

\(Q=\frac{x-1}{x+1}=1-\frac{2}{x+1}\)

Để Q nguyên thì x+1 phải thuộc ước của 2!! tự làm tiếp dễ rồi!!

9 tháng 4 2016

\(\frac{7}{12}x+0,75=-2\frac{1}{6}=-\frac{13}{6}\)

\(=>\frac{7}{12}x=-\frac{13}{6}-0,75=-\frac{13}{6}-\frac{3}{4}=-\frac{35}{12}\)

\(=>x=-\frac{35}{12}:\frac{7}{12}=-\frac{35}{12}.\frac{12}{7}=-\frac{35}{7}=-5\)

Vậy x=-5

9 tháng 4 2016

\(-1<\frac{x}{4}<\frac{1}{2}\)

\(<=>-\frac{4}{4}<\frac{x}{4}<\frac{2}{4}\)

<=>-4<x<2

<=>x E {-3;-2;-1;0;1}

Vậy.......................

26 tháng 11 2016

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

26 tháng 11 2016

khó quá