Cho hình vuông ABCD có M thuộc AB. Gọi N là giao điểm của DM và BC. Qua D kẻ Dx vuông góc với DN và Dx cắt BC tại K.
a) Chứng tỏ rằng AM.BN = AD.MB
b) Chứng minh tam giác DMK vuông cân.
c) Chứng minh không đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại B và ΔAID vuông tại I có
AD chung
\(\widehat{BAD}=\widehat{IAD}\)
Do đó: ΔABD=ΔAID
Suy ra: AB=AI
hay ΔABI cân tại A
b: Xét ΔBDM vuông tại B và ΔIDC vuông tại I có
DB=DI
\(\widehat{BDM}=\widehat{IDC}\)
Do đó: ΔBDM=ΔIDC
Suy ra: DM=DC
c: Ta có: ΔBDM=ΔIDC
nên BM=IC
Ta có: AB+BM=AM
AI+IC=AC
mà AB=AI
và BM=IC
nên AM=AC
hay ΔAMC cân tại A
mà \(\widehat{MAC}=60^0\)
nên ΔAMC đều
a: Xét tứ giác ADEC có
Ilà trung điểm chung của AE và DC
nên ADEC là hình bình hành
b: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
AD là phân giác của góc MAN
Do đó: AMDN là hình vuông
c: DE//AC
DM//AC
Do đó: D,M,E thẳng hàng
Tự kẻ hình
a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)
b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có:
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề)
=> DM = DC (2 cạnh tương ứng)
c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng)
- Xét tam giác vuông AMD, có
AD + AM > DM (bất đẳng thức tam giác)
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm)
Tam giác AMB đồng dạng với tam giác BMN ( Tự chứng minh )
Suy ra \(\frac{AM}{BM}=\frac{AD}{BN}\Rightarrow AM.BN=AD.BM\)
b) Ta chứng minh tam giác ADM bằng tam giác CDK
Rồi suy ra tam giác DMK cân
Mà DM vuông góc với DK
Nên tam giác DMK vuông cân