Cho tam giác abc vuông tại a Ab=4 cm Ac=3cm đường phân giác xuất phát từ đỉnh B cắt Ac tại D(d thuộc ac) tại D kẻ đường vuông học vs BC và cắt BC tại
a tính bc
B cm tam giác ABD=tam giác HBD
C so sánh BD và Bh
(Giúp mik vs ạ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: BK=BA+AK
BC=BE+EC
mà BA=BE và AK=EC
nên BK=BC
=>góc BKC=góc BCK
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Vậy: BC=5cm
Xét ΔABD vuông tại A
ΔEBD vuông tại E
CÓ : BD : CẠNH HUYỀN CHUNG
\(\widehat{ABD}=\widehat{EBD}\) (D LÀ TIA PHÂN GIÁC CỦA GÓC B)
⇒ΔABD= ΔEBD (CẠNH HUYỀN-CẠNH GÓC VUÔNG)
C)XÉT ΔDAI VUÔNG TẠI A
ΔDEC VUÔNG TẠI E
CÓ: \(\widehat{A}=\widehat{E}\)(GT)
AD=CD(ΔABD= ΔEBD)
\(\widehat{ADI}=\widehat{EDC}\) (ĐỐI ĐỈNH)
⇒ΔDAI=ΔDEC (G-C-G)
⇒DI = CD
⇒ΔIDC CÂN TẠI D
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên DA=DE(hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+6^2=100\)
hay BC=10(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+BC+AC=8+6+10=24\left(cm\right)\)
Mình vẫn chưa hiểu cái câu c á bạn. Giải thích giúp mình được không?
a. Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
\(C_{ABC}=6+8+10=24cm\)
b. xét tam giác vuông ABD và tam giác vuông BDM, có:
B : góc chung
AD: cạnh chung
Vậy tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )
a) Ta có \(\Delta ABC\) vuông tại A
Áp dụng định lí Pi-ta-go vào \(\Delta ABC\) có:
AB2 + AC2 = BC2
=> 42 + 32 = BC2
=> BC2 = 25
=> BC = 5 cm
b) Xét tam giác ABD và tam giác HBD có:
\(\widehat{A}=\widehat{BHD}=90^o\) ( do tam giác ABC vuông tại A và HD vuông góc với BC)
\(\widehat{ABD}=\widehat{HBD}\) ( BD là đường phân giác của góc ABC)
BD là cạnh chung
=> tam giác ABD = tam giác HBD ( cạnh huyền-góc nhọn)
c) Ta có : tam giác HBD vuông tại H ( do HD vuông góc BC)
Mà BD là cạnh huyền
=> BD là cạnh lớn nhất trong tam giác HBD ( trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
=> BD > BH