\(\dfrac{4^2.4^3}{2^{10}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{12^{15}\cdot3^4-4^5\cdot3^9}{27^3\cdot2^{10}-32^3\cdot3^9}\\ =\dfrac{\left(2^2\cdot3\right)^{15}\cdot3^4-\left(2^2\right)^5\cdot3^9}{\left(3^3\right)^3\cdot2^{10}-\left(2^5\right)^3\cdot3^9}\\ =\dfrac{2^{30}\cdot3^{15}\cdot3^4-2^{10}\cdot3^9}{3^9\cdot2^{10}-2^{15}\cdot3^9}\\ =\dfrac{3^9\cdot2^{10}\left(2^{20}\cdot3^{10}\right)}{3^9\cdot2^{10}\left(1-2^5\right)}\\ =\dfrac{\left(2^2\right)^{10}\cdot3^{10}}{1-32}\\ =\dfrac{\left(2^2\cdot3\right)^{10}}{-31}\\ =\dfrac{-12^{10}}{31}\)
\(B=\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{99}{49^2\cdot50^2}\\ =\dfrac{2^2-1^2}{1^2\cdot2^2}+\dfrac{3^2-2^2}{2^2\cdot3^2}+...+\dfrac{50^2-49^2}{49^2\cdot50^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{49^2}-\dfrac{1}{50^2}\\ =1-\dfrac{1}{2500}\\ =\dfrac{2499}{2500}\)
a,(0,8)5:(0,4)6 = (\(\dfrac{0,8}{0,4}\))5 : 0,4 = 25:0,4 = 80
b, (-25)7: 323 - \(\dfrac{6103515625}{3276}\) = - 186264,5149
c, \(\dfrac{4^2.4^3}{2^{10}}\) = \(\dfrac{4^5}{2^{10}}\) = \(\dfrac{2^{10}}{2^{10}}\) = 1
d, \(\dfrac{9^5.5^7}{45^7}\) = \(\dfrac{9^5.5^7}{9^7.5^7}\) = \(\dfrac{1}{81}\)
\(\dfrac{\left(0.8\right)^5}{\left(0.4\right)^4}\)=\(\dfrac{\left(2.0,4\right)^5}{\left(0.4^4\right)}\)=\(\dfrac{2^5.\left(0.4\right)^5}{\left(0,4\right)^4}\)=\(2^5\).\(\left(0.4\right)^1\)=12,8
b)câu b không biết có sai đề không nhưng đáp án câu b là -186264,5149
c) \(\dfrac{4^2.4^3}{2^{10}}\)=\(\dfrac{4^5}{\left(2^2\right)^5}\)=\(\dfrac{4^5}{4^5}\)=1
d)\(\dfrac{9^5.5^7}{45^7}\)=\(\dfrac{9^5.5^5.5^2}{45^7}\)=\(\dfrac{45^5.5^2}{45^7}\)=\(\dfrac{5^2}{45^2}\)=\(\left(\dfrac{5}{45}\right)^2\)=\(\left(\dfrac{1}{9}\right)^2\)=\(\dfrac{1}{81}\)
Ta có:
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2+10^2}\)
\(=\left(\dfrac{1}{1^2}-\dfrac{1}{2^2}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{3^2}\right)+...+\left(\dfrac{1}{9^2}-\dfrac{1}{10^2}\right)\)
\(=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(=\dfrac{1}{1^2}-\dfrac{1}{10^2}\)
\(=1-\dfrac{1}{100}\)
Vì \(1-\dfrac{1}{100}< 1\)
Nên \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2+10^2}< 1\) (Đpcm)
\(vt:\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2+10^2}\)
=\(\dfrac{1}{1}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+..+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
=\(\dfrac{1}{1}-\dfrac{1}{10^2}\)
=>A<1
\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{99^2}{98.100}\)
\(=\dfrac{2.2.3.3.4.4.....99.99}{1.3.2.4.3.5.....98.100}\)
\(=\dfrac{2.3.4.....99}{1.2.3.4.....98}.\dfrac{2.3.4.....99}{3.4.5.....100}\)
\(=\dfrac{99}{98}\cdot\dfrac{2}{100}\)
\(=\dfrac{99}{4900}\)
\(N=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...+\dfrac{10}{46.56}\\ N=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{46}-\dfrac{1}{56}\\ N=1-\dfrac{1}{56}\\ N=\dfrac{55}{56}\)
\(\dfrac{4}{3}\times\dfrac{9}{8}\times\dfrac{16}{15}\times\dfrac{25}{24}=\dfrac{5}{3}\)
`(2^2)/(1 . 3) . (3^2)/(2 . 4) . (4^2)/(3 . 5) . (5^2)/(4 . 6)`
`= 4/3 . 9/8 . 16/15 . 25/24 = 5/3`
\(\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{\left(2^2\right)^2\cdot\left(2^2\right)^3}{2^{10}}=\dfrac{2^4\cdot2^6}{2^{10}}=1\)
\(=\dfrac{4^5}{2^{10}}\) \(=\dfrac{\left(2^2\right)^5}{2^{10}}\) \(=\dfrac{2^{10}}{2^{10}}=1\)