Giai pt:
a) 2/x/ - /x+1/ = 2
b) /3x-5/ = /x+2/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(11-2x=x-1\Leftrightarrow-2x-x=-1-11\Leftrightarrow-3x=-12\Leftrightarrow x=-4\)
b,\(\text{5(3x+2)=4x+1}\Leftrightarrow15x+10=4x+1\Leftrightarrow15x-4x=1-10\Leftrightarrow11x=-9\Leftrightarrow x=\dfrac{-9}{11}\)
c,\(x^2-4-\left(x-2\right)\left(x-5\right)\Leftrightarrow\left(x+2\right)\left(x-2\right)-\left(x-2\right)\left(x-5\right)\Leftrightarrow\left(x-2\right)[\left(x+2\right)-\left(x-5\right)]\Leftrightarrow\left(x-2\right)\left[x+2-x+5\right]\Leftrightarrow\left(x-2\right)7\Leftrightarrow7x-14\)
Câu 1: ĐKXĐ: ...
\(\Leftrightarrow4x\left(3x-1\right)+x-1=4x\sqrt{3x+1}\)
\(\Leftrightarrow12x^2-3x-1-4x\sqrt{3x+1}=0\)
\(\Leftrightarrow16x^2-\left(4x^2+4x\sqrt{3x+1}+3x+1\right)=0\)
\(\Leftrightarrow16x^2-\left(2x+\sqrt{3x+1}\right)^2=0\)
\(\Leftrightarrow\left(2x-\sqrt{3x+1}\right)\left(6x+\sqrt{3x+1}\right)=0\)
\(\Leftrightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2-4\right)=y^3+2y\\x^2-4=-3y^2\end{matrix}\right.\)
\(\Leftrightarrow x\left(-3y^2\right)=y^3+2y\)
\(\Leftrightarrow y\left(y^2+3xy+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\Rightarrow...\\y^2+3xy+2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow3xy=-y^2-2\Rightarrow x=\frac{-y^2-2}{3y}\)
\(\Rightarrow\left(\frac{y^2+2}{3y}\right)^2-1=3\left(1-y^2\right)\)
\(\Leftrightarrow\left(\frac{y^2-3y+2}{3y}\right)\left(\frac{y^2+3y+2}{3y}\right)=3\left(1-y^2\right)\)
\(\Leftrightarrow\frac{\left(y-1\right)\left(y-2\right)\left(y+1\right)\left(y+2\right)}{9y^2}=3\left(1-y^2\right)\)
\(\Leftrightarrow\frac{\left(y^2-1\right)\left(y^2-4\right)}{9y^2}=3\left(1-y^2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2-1=0\\\frac{y^2-4}{9y^2}=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y^2-1=0\\28y^2=4\end{matrix}\right.\)
\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{4x\left(3x-1\right)+x-1}{4x}=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{12x^2-4x+x-1}{4x}=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{12x^2-3x-1}{4x}=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{\left(12x^2-3x-1\right)^2}{16x^2}=3x+1\)
\(\Leftrightarrow\left(12x^2-3x-1\right)^2=16x^2\left(3x+1\right)\)
\(\Leftrightarrow144x^4-120x^3-31x^2+6x+1=0\)
\(\Leftrightarrow144x^4-144x^3+24x^3-24x^2-7x^2+7x-x+1=0\)
\(\Leftrightarrow144x^3\left(x-1\right)+24x^2\left(x-1\right)+7x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(144x^3+24x^2+7x-1\right)=0\)
Tìm được mỗi nghiệm thôi à :v
a: \(\Leftrightarrow x+2-3xm-m=5\)
\(\Leftrightarrow x\left(1-3m\right)=5+m-2=m+3\)
Để đây là pt bậc nhất thì -3m+1<>0
hay m<>1/3
b: Khi m=-1 thì pt sẽ là \(x\left(1+3\right)=-1+3=2\)
=>x=1/2
Giải pt :
\(\left(x+2\right)\left(3x+1\right)+x^2=4\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)+x^2-4=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)+\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)+\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(3x+1\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{4}\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{-2;\dfrac{1}{4}\right\}\)
a) \(3x^2+x-4=0\)
\(\Leftrightarrow\)\(3x^2-3x+4x-4=0\)
\(\Leftrightarrow\)\(3x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-\frac{4}{3}\end{cases}}\)
Vậy..
b) \(2x^2-x-28=0\)
\(\Leftrightarrow\)\(\left(x-4\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=4\\x=-3.5\end{cases}}\)
Vậy...
c) \(6x^2-x-7=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{6}\end{cases}}\)
Vậy....
d) \(3x^2-5=0\)
\(\Leftrightarrow\)\(3x^2=5\)
\(\Leftrightarrow\)\(x^2=\frac{5}{3}\)
\(\Leftrightarrow\)\(x=\pm\sqrt{\frac{5}{3}}\)
Vậy...
=>\(\dfrac{-1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}=2\)
=>\(\dfrac{1}{x-4}-\dfrac{1}{x-1}=2\)
=>\(\dfrac{x-1-x+4}{x^2-5x+4}=2\)
=>2x^2-10x+8=3
=>2x^2-10x+5=0
=>\(x=\dfrac{5\pm\sqrt{15}}{2}\)
Lần sau ghi cái trị tuyệt đối thẳng lên bạn :))))
a) \(2\left|x\right|-\left|x+1\right|=2\left(1\right)\)
- Nếu \(x>0>-1\Leftrightarrow x>0;x+1>0\)
thì \(pt\left(1\right):2x-x-1=2\Leftrightarrow x=3\)( nhận )
- Nếu \(-1\le x\le0\Leftrightarrow x\le0;x+1\ge0\)
thì \(pt\left(1\right):-2x-x-1=2\Leftrightarrow x=-1\)( nhận )
- Nếu \(x< -1< 0\Leftrightarrow x< 0;x+1< 0\)
thì \(pt\left(1\right):-2x+x+1=2\Leftrightarrow x=-1\)( loại )
Vậy phương trinh có 2 nghiệm x = 3 và x = -1
b) \(\left|3x-5\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-5=x+2\\3x-5=-x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}3x-x=2+4\\3x+x=5-2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=7\\4x=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}=3,5\\x=\frac{3}{4}=0,75\end{cases}}}\)
Vậy phương trình trên có 2 nghiệm x = 3,5 và x = 0,75
a) 2IxI-Ix+1I=2
+)x<-1
<=>-2x+x+1=2
<=>-x=1
<=>x=-1(không TMĐK)
+)-1\(\le\)x<0
<=>-2x-x-1=2
<=>-3x=3
<=>x=-1(TMĐK)
+)x\(\ge\)0
<=>2x-x-1=2
<=>x=3(TMĐK)
vậy tập nghiệm của pt đã cho là :{-1;3}