tìm gtnn: p=x^2 + 2y^2 + 2xy - 6x -8y +2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\left(x^2+2xy+y^2\right)-6\left(x+y\right)+9+\left(y^2-2y+1\right)+2008\)
=\(\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2008\)
=\(\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008\)
VÌ\(\hept{\begin{cases}\left(y-1\right)^2\ge0\\\left(x+y-3\right)^2\ge0\end{cases}}\)
DẤU BĂNG XẢY RA KHI VÀ CHỈ KHI y=1 và x=2
VẬY GTNN LÀ 2008 TẠI X=2 VÀ Y=1
Giải:
\(P=x^2+2y^2+2xy-6x-8y+2018\)
\(\Leftrightarrow P=\left(x^2+y^2+9+2xy-6x-6x\right)+\left(y^2-2y+1\right)+2008\)
\(\Leftrightarrow P=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)
Vì \(\left\{{}\begin{matrix}\left(x+y-3\right)^2\ge0;\forall x,y\\\left(y-1\right)^2\ge0;\forall y\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008;\forall x,y\)
Hay \(P\ge2008;\forall x,y\)
Vậy ...
\(P=x^2+2y^2+2xy-6x-8y+2018\)
<=> \(P=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)
<=> P=(x+y)2-6(x+y) +9 +(y-1)2 +2008
<=> P=(x+y-3)2+(y-1)2+2008
=> Min P= 2008 dấu = xảy ra khi y=1;x=2
Cứ gom mấy cái 2xy gì đó về làm thành một hằng đẳng thức là được ạ!
\(P=\left(x^2+2xy+y^2\right)-6x-6y+y^2-2y+2019\)
\(=\left[\left(x+y\right)^2-2.\left(x+y\right).3+9\right]+\left(y^2-2y+1\right)+2009\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2009\ge2009\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y-3=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(P_{min}=2009\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(P=x^2+2y^2+2xy-6x-8y+2024\)
\(P=x^2+y^2+y^2+2xy-6x-6y-2y+2024\)
\(P=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+y^2-2y+1+2014\)
\(P=\left(x+y\right)^2-2\left(x+y\right)3+3^2+\left(y^2-2y+1\right)+2014\)
\(P=\left(x+y-3\right)^2+\left(y-1\right)^2+2014\)
\(P\ge2014\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Vậy.....
\(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)
\(\Rightarrow x=-4\)
Vậy minP=2002 tại x=-4;y=4
a) \(P=x^2+2y^2-2xy-8y+2018\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)
\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)
Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)
Hay \(P\ge2012;\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow x=y=4\)
Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)
\(x^2+2y^2+2xy-6x-8y+2018\)
\(=x^2+y^2+9+2xy-6x-6y+y^2-2y+1+2008\)
\(=\left(3-x-y\right)^2+\left(y-1\right)^2+2008\) \(\ge2008\)
Dấu '=' xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}3-x-y=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy Min P = 2008 <=> x=2; y=1
\(p=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)
\(=\left(x+y\right)^2-6\left(x+y\right)+9+\left(y-1\right)^2+2008\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)\(\ge2008\)với \(\forall x,y\)
Dấu "=" xảy ra khi y = 1; x = 2