cho x, y, z thuộc Z. Chứng min rằng:
a, Nếu 3x^2+2y chia hết cho 11 thì 15x^2-12y chia hết cho 11
b, Nếu 2x+3y^2 chia hết cho 7 thì 6x+16y^2 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x^2+2y⋮11\Leftrightarrow16\left(3x^2+2y\right)⋮11\Leftrightarrow48x^2-33x^2+32y-44y⋮11\)
\(\Leftrightarrow15x^2-12y⋮11\)
b) \(2x+3y^2⋮7\Leftrightarrow10\left(2x+3y^2\right)⋮7\Leftrightarrow20x-14x+30y^2-14y^2⋮7\)
\(\Leftrightarrow6x+16y^2⋮7\)
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
\(x+2y⋮5\)
\(\Leftrightarrow3x+6y⋮5\)
\(\Leftrightarrow3x+6y+10y⋮5\)
\(\Leftrightarrow3x+16y⋮5\left(\text{đ}pcm\right)\)
a,15(3x-2y) chia het cho 17
15(3x-2y)-17(2x-y) chia het cho 17
45x-30y-34x+17y chia het cho 17
11x-13y chia het cho 17
b,5(4x+3y) chia het cho 13
5(4x+3y)-13(x+y) chia het cho 13
20x+15y-13x-13y chia het cho 13
7x+2y chia het cho 13
c,x+99y chia het cho 7
x+99y-98y chia het cho 7
x+y chia het cho 7
x,y thuộc Z
A= (13+2)x -(26-3)y = 13x + 2x -26y + 3y =13(x-2y) + (2x+3y) = 13(x-2y) + B
A chia hết 13 => (2x+3y) chia hết 13 vì 13(x-2y) chắc chắn chia hết 13=> B chia hết 13
ngược lại cũng đúng.
Bài làm: ( Toán lớp 6 ).
x , y đều thuộc Z.
A = ( 13 + 2 )x - ( 26 - 3)y.
= 13x + 2x - 26y + 3y.
= 13( x - 2y ) + ( 2x + 3y ) = 13 ( x - 2y ) + B.
Vì A chia hết cho 13.
Suy ra: ( 2x + 3y ) : 13.
Vì 13( x - 2y ) : 13.
Suy ra: B chia hết cho 13.
Học tốt #
do a+b chia hết cho 7 =>a chia hết 7,b chia hết 7=> a+8b chia hết cho 7
tương tự ở câu b
c thì chứng minh thêm 2009 chia hết cho 7 là được
Lời giải:
a.
\(3x^2+2y\vdots 11\Leftrightarrow 5(3x^2+2y)\vdots 11\)
$\Leftrightarrow 15x^2+10y\vdots 11$
$\Leftrightarrow 15x^2+10y-22y\vdots 11$
$\Leftrightarrow 15x^2-12y\vdots 11$ (đpcm)
b.
$2x+3y^2\vdots 7$
$\Leftrightarrow 3(2x+3y^2)\vdots 7$
$\Leftrightarrow 6x+9y^2\vdots 7$
$\Leftrightarrow 6x+9y^2+7y^2\vdots 7$
$\Leftrightarrow 6x+16y^2\vdots 7$ (đpcm)