chứng minh rằng với mọi n thuộc N, n lớn hơn hoặc bằng 2, ta có 3/9.14 + 3/14.19 + 3/19.24 +.......+ 3/(5n-1)(5n+4) < 1/15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)
kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)
=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)
Đặt \(A=\frac{3}{9.14}+\frac{3}{14.19}+.......+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=\frac{15}{9.14}+\frac{15}{14.19}+.....+\frac{15}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=3.\left(\frac{5}{9.14}+\frac{5}{14.19}+......+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(5A=\frac{1}{3}-\frac{1}{5n+4}\)
=> \(5A<\frac{1}{3}\)
=> \(A<\frac{1}{3}:5\)
hay \(A<\frac{1}{15}\) \(\left(đpcm\right)\)
Nhớ nhé bạn
Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n+1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+....+\frac{5}{\left(5n+1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+....+\frac{1}{5n+1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(=\frac{1}{15}-\frac{3}{5\left(5n+4\right)}< \frac{1}{15}\) (đpcm)
đpcm<=> 5/9.14+5/14.19+...+5/(5n-1)(5n+4)<1/9
<=>1/9-1/5n+4<1/9
<=>5n-5/45n+36<1/9(đúng với mọi n>=2)
Vậy ddpcm là đúng