Tính nhanh:
B=(1+1/2)x(1+1/3)x(1+1/4)...x(1+1/99)
Giải giùm mình nha! Mai mình thi rồi!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhớ ghi dấu ngoặc tránh giải sai.
\(a.\) \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}\)
Ta có:
\(2x+6=2\left(x+3\right)\)
\(x^2-9=\left(x-3\right)\left(x+3\right)\)
nên \(MTC:\) \(2\left(x-3\right)\left(x+3\right)\)
Do đó: \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}=\frac{x+4}{2\left(x+3\right)}+\frac{3}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+4\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{2.3}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2+x-12+6}{2\left(x-3\right)\left(x+3\right)}\)
\(=\frac{x^2+x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2-2x+3x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-2\right)+3\left(x-2\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{\left(x-2\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{x-2}{2\left(x-3\right)}\)
ĐKXĐ: \(x^2-4x+1\ge0\)
\(2x+2+2\sqrt{x^2-4x+1}=6\sqrt{x}\)
\(\Leftrightarrow2x+2-5\sqrt{x}+2\sqrt{x^2-4x+1}-\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{4x^2-17x+4}{2x+2+5\sqrt{x}}+\dfrac{4x^2-17x+4}{2\sqrt{x^2-4x+1}+\sqrt{x}}=0\)
\(\Leftrightarrow\left(4x^2-17x+4\right)\left(\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{2\sqrt{x^2-4x+1}+\sqrt{x}}\right)=0\)
\(\Leftrightarrow4x^2-17x+4=0\)
\(\Leftrightarrow...\)
H = 2012 - 1 - ( \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+99}\))
= 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{\left(99+1\right).\left[\left(99-1\right):1+1\right]:2}\)
= 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\))
= 2011 - 2.( \(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\))
= 2011 - 2.(\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\))
= 2011 - 2.( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))
= 2011 - 2.(\(\frac{1}{2}-\frac{1}{100}\)) = 2011 - 2.\(\frac{49}{100}\)= 2011 - \(\frac{49}{50}\)= \(\frac{100501}{50}\)
\(H=2012-\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}\right)\)
\(=2012-\left(1+\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+...+\frac{1}{99\left(99+1\right):2}\right)\)
\(=2012-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)
\(=2012-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2}{99.100}\right)\)
\(=2012-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2012-2\left(1-\frac{1}{100}\right)\)
\(=2012-2\cdot\frac{99}{100}\)
\(=2012-\frac{99}{50}\)
\(=\frac{100501}{50}\)
đặt A=(x+1)+(X+2)+(x+3)+....+(x+99)
=> A= x+1+x+2+x+3+....+x+100
=x+x+x+x+...+x+(1+2+3+4+..+99)( có 99x)
=> 99x+4950=0
=> 99x=-4950
=> x=-50
(1-1/2)x(1-1/3)x(1-1/4)x.......x(1-1/2007)
giải chi tiêt giùm mình nha!
mình chỉ biết đáp án là 1/2007
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x............x\left(1-\frac{1}{2017}\right)\))
= \(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x..............x\frac{2006}{2007}\)
= \(\frac{1}{2007}\)
Đó là kết quả sau khi trực tiêu
Bài này dễ mà
Trong violympic
\(B=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(\Rightarrow B=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)
\(\Rightarrow B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}\)
\(\Rightarrow B=\frac{3.4.5...100}{2.3.4...99}\)
\(\Rightarrow B=\frac{100}{2}\)
\(\Rightarrow B=50\)
Vậy \(B=50\)