Cho tam giác ABC cân tại A có một điểm D cố định trên cạnh đáy BC, kẻ đường thẳng d song song với BC cắt AB; AC lần lượt tại E và F. Hãy tìm vị trí của d để DE+DF đạt giá trị nhỏ nhất ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Ta sẽ chứng minh O thuộc (ATN).
Ta có \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => ^OAC = ^OAB = ^OBA => ^OAT = ^OBN
Ta thấy ^NBM = ^ABC = ^ACB = ^NMB (Do MN // AC) => \(\Delta\)MNB cân tại N => BN = MN
Lại có AN // TM, AT // MN suy ra tứ giác ATMN là hình bình hành => MN = AT
Do đó BN = AT, kết hợp với ^OAT = ^OBN, OA = OB suy ra \(\Delta\)OTA = \(\Delta\)ONB (c.g.c)
=> ^OTA = ^ONB = ^ONA => Bốn điểm O,A,T,N cùng thuộc một đường tròn
Hay đường tròn (ATN) luôn đi qua điểm O cố định (đpcm).
a: Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=3/5
=>DE=6cm
b: Xét ΔADE và ΔCGE có
góc AED=góc CEG
góc EAD=góc ECG
=>ΔADE đồng dạng với ΔCGE
c: Xét tứ giác DBCG có
DG//BC
DB//CG
=>DBCG là hình bình hành
=>DB=CG