K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2021

Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:

giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2

Ta đi tìm số dư 1 cách tổng quát: 

Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\) 

Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3

từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\) 

Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này ) 

áp dụng vào bài toán ta có: 

\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)

Gán:  \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i

\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke

 

 

 

9 tháng 7 2021

Khiếp học ghê như vầy bảo dạy người ta thì kêu thôi, sợ sót kiến thức :)))?

12 tháng 12 2019


27 tháng 12 2019

Đáp án B

3 tháng 2 2022

Ta có : \(y'=3x^2+3m\)

Điều kiện để hàm số có 2 điểm cực trị là y'=0 có 2 nghiệm phân biệt

\(\Leftrightarrow 3x^2=-3m\) có 2 nghiệm phân biệt

\(\Leftrightarrow m<0\)

Đường thẳng đi qua 2 điểm cực trị là phần dư khi lấy y chia cho y':

\(x^3+3mx+1=\dfrac{x}{3}.(3x^2+3m)+2mx+1\)

\(=>\) đường thẳng đi qua 2 điểm cực trị có dạng: \(y=2mx+1\)

\(\Leftrightarrow 2mx-y+1=0\) \((\Delta)\)

\(d_{(M,\Delta)}=\dfrac{|0.2m+3.(-1)+1|}{\sqrt{4m^2+1}}=\dfrac{2}{\sqrt{5}}\)

\(\Leftrightarrow 4m^2+1=5 \Leftrightarrow m^2=1 \Leftrightarrow m=\pm1\)

Đối chiếu với điều kiện ta được \(m=1\)

 

15 tháng 9 2021

Theo đk thì m=–1 mới đúng

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

8 tháng 4 2017

Đáp án là A

4 tháng 12 2021

a) Để đồ thị hàm số \(y=\left(m-2\right)x+2\) đồng biến trên R.

=> \(m-2>0.\)

<=> \(m>2.\)

b) Đồ thị hàm số \(y=\left(m-2\right)x+2\) song song với đường thẳng \(y=5x+1.\)

=> \(m-2=5.\)

<=> \(m=7.\)

4 tháng 12 2021

Câu 2

a) Để hs đã cho đồng biến trên R thì:

\(m-2>0\\ < =>m>2\)

b) Đề đths đã cho song song với đường thẳng \(y=5x+1\) thì:

\(m-2=5\\ < =>m=7\)

30 tháng 1 2018

Chọn C

[Phương pháp tự luận]

Ta có : y = 6 x 2 - 6 ( m + 1 ) x + 6 m

 

Điều kiện để hàm số có 2 điểm cực trị là m ≠ 1

Hệ số góc đt AB là  k = - ( m - 1 ) 2

Đt AB vuông góc với đường thẳng y = x + 2

31 tháng 12 2019

+ Ta có  đạo hàm y’ = 6x2- 6( m+ 1) x+ 6m

Điều kiện để hàm số có 2 điểm cực trị là : m≠ 1

Tọa độ 2 điểm cực trị là A( 1 ; 3m-1) và B ( m ; -m3+ 3m2)

+ Hệ số góc đường thẳng AB  là :k= - ( m-1) 2

+ Đường thẳng AB vuông góc với đường thẳng y= x+ 2 khi và chỉ khi k= -1

Hay – ( m-1) 2= -1( vì 2 đường thẳng vuông góc với nhau thì tích hai hệ số góc bằng -1) 

Chọn C.

19 tháng 12 2021

Chọn B

19 tháng 1 2022

Chọn A B C D gì đó cx đc chọn đại đi