K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\)

\(\Rightarrow\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}< 1\left(đpcm\right)\)

6 tháng 5 2018

ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{100}}\)

\(A=1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

22 tháng 4 2016

Tinh 2A, roi lay 2A-A se chung to dc

1 tháng 5 2018

A= \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)\(\frac{1}{2^{100}}\).

2A= 1+ \(\frac{1}{2}\)\(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)\(\frac{1}{2^{101}}\).

2A- A=( 1+ \(\frac{1}{2}\)\(\frac{1}{2^2}\)+...+ \(\frac{1}{2^{100}}\)\(\frac{1}{2^{101}}\))-(  \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+...+ \(\frac{1}{2^{99}}\)\(\frac{1}{2^{100}}\)).

A= 1- \(\frac{1}{2^{100}}\)< 1.

=> A< 1.

Vậy A< 1.

1 tháng 5 2018

Ta có

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow2A=\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+\frac{2}{2^4}+...+\frac{2}{2^{100}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

\(\Rightarrow A< 1\)

Vậy A<1 (đpcm)

9 tháng 5 2018

Ta có:3.A=1+1/3+1/3^2+...+1/3^97 +1/3^98

=>3.A - A=(1+1/3+1/3^2+...+1/3^98 + 1/3^99)-(1/3+1/3^2 +1/3^3+...+1/3^98+1/3^99)

=>2.A=1-1/3^99

=>A=1/2 -1/3^99.1/2 <1/2

Vậy ... T I C K cho mình với nha

22 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)

 \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)

\(A< 1\)(2)

Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)

Chúc bạn học tốt!hihi

 

5 tháng 4 2022

1/2+1/2 mũ 2+1/2 mũ 3+...+1/2 mũ 100

27 tháng 4 2017

Ta có : \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)

            \(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2017}}\)

             \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{2}{2^{2016}}\right)\)

\(A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2016}}-\frac{1}{2^{2017}}\)

\(A=2-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

Vậy A < 1 

27 tháng 4 2017

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}\)

\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)

\(A=2-\frac{1}{2^{2017}}\left(đpcm\right)\)

23 tháng 6 2016

A = 1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100

2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/299

2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/299) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100)

A = 1 - 1/2100 < 1

Do 1 > 1/2100 => A > 0

=> 0 < A < 1

=> đpcm

A=12.34.56...99100A=12.34.56...99100

A<23.45.67...100101⇒A<23.45.67...100101

A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100

A2<1101<1100=1102⇒A2<1101<1100=1102

A<