Cho a,b,c > 0 và a.b.c = 1. Tìm giá trị nhỏ nhất của biểu thức sau :
P = ( a + 1)( b+1 )( c + 1 ).
Mình đang cần gấp mong mọi người giải giúp mình nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a^3-b^3-ab\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)
\(=a^2+ab+b^2-ab\) (vì \(a-b=1\))
\(=a^2+b^2\)
\(=a^2+\left(a-1\right)^2\)
\(=2a^2-2a+1\)
\(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)
Dấu "=" xảy ra: \(\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)
\(b=a-1=\frac{1}{2}-1=-\frac{1}{2}\)
Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow a=\frac{1}{2},b=-\frac{1}{2}\)
Chúc bạn học tốt.
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)
\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)
\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)
Biểu thức A bạn viết đúng chưa?
Giải:
Áp dụng BĐT Cô-si ta có:
\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)
\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)
\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)
Nhân vế theo vế ta được:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(2.2.2\right)\left(\sqrt{a}.\sqrt{b}.\sqrt{c}\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8.\sqrt{abc}=8.\sqrt{1}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(P_{min}=8\) tại \(\Leftrightarrow a=b=c=1\)
p=(a+1)(b+1)(c+1)
Vì a,b,c>0 áp dụng BĐT cosi ta có:
a+1\(\ge\)2\(\sqrt{a.1}\)=2\(\sqrt{a}\)(1)
b+1\(\ge\)2\(\sqrt{b.1}\)=2\(\sqrt{b}\)(2)
c+1\(\ge\)2\(\sqrt{c.1}\)=2\(\sqrt{c}\)(3)
Nhân vế với vế của(1);(2) và (3) ta có:
P=(a+1)(b+1)(c+1) \(\ge\)2.\(\sqrt{a}\).2.\(\sqrt{b}\).2.\(\sqrt{c}\)
P=(a+1)(b+1)(c+1)\(\ge\)8.\(\sqrt{abc}\)=8
Vậy P đạt giá trị nhỏ nhất là 8 dấu = xảy ra khi a=b=c=1
vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)
dấu = xảy ra khi \(a=b=c=1\)
vậy min của P là 8 khi a=b=c=1
Bạn có thể tham khảo tại:
https://olm.vn/hoi-dap/question/922685.html
Chúc bạn học giỏi