K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)

dấu = xảy ra khi \(a=b=c=1\)

vậy min của P là 8 khi a=b=c=1

Bạn có thể tham khảo tại:

https://olm.vn/hoi-dap/question/922685.html

Chúc bạn học giỏi

30 tháng 8 2018

\(A=a^3-b^3-ab\)

   \(=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)

   \(=a^2+ab+b^2-ab\) (vì \(a-b=1\))

   \(=a^2+b^2\)

   \(=a^2+\left(a-1\right)^2\)

   \(=2a^2-2a+1\)

  \(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)

  \(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)

Dấu "=" xảy ra: \(\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

\(b=a-1=\frac{1}{2}-1=-\frac{1}{2}\)

Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow a=\frac{1}{2},b=-\frac{1}{2}\)

Chúc bạn học tốt.

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

6 tháng 5 2020

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

28 tháng 4 2017

Giải:

Áp dụng BĐT Cô-si ta có: 

\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)

\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)

\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)

Nhân vế theo vế ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(2.2.2\right)\left(\sqrt{a}.\sqrt{b}.\sqrt{c}\right)\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8.\sqrt{abc}=8.\sqrt{1}=8\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{min}=8\) tại \(\Leftrightarrow a=b=c=1\)

20 tháng 5 2016

p=(a+1)(b+1)(c+1)

Vì a,b,c>0 áp dụng BĐT cosi ta có:

a+1\(\ge\)2\(\sqrt{a.1}\)=2\(\sqrt{a}\)(1)

b+1\(\ge\)2\(\sqrt{b.1}\)=2\(\sqrt{b}\)(2)

c+1\(\ge\)2\(\sqrt{c.1}\)=2\(\sqrt{c}\)(3)

Nhân vế với vế của(1);(2) và (3) ta có:

P=(a+1)(b+1)(c+1) \(\ge\)2.\(\sqrt{a}\).2.\(\sqrt{b}\).2.\(\sqrt{c}\)

P=(a+1)(b+1)(c+1)\(\ge\)8.\(\sqrt{abc}\)=8

Vậy P đạt giá trị nhỏ nhất là 8 dấu = xảy ra khi a=b=c=1

12 tháng 7 2023

Mày nhìn cái chóa j

12 tháng 7 2021

a

C= |x-1| + |x-5|

Do x-1 + x-5 luôn > 0

=> x-1 + x-5 = 0

=> 2x -6 = 0

=> 2x = 6

=> x = 3

12 tháng 7 2021

mình ghi nhầm, lớn hơn hoặc bằng 0 nha