K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   với mọi a, b, c

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge ab+bc+ac+2ab+2bc+2ac\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

NV
8 tháng 6 2019

Ta chứng minh: \(a^3+b^3\ge ab\left(a+b\right)\)

Thực vậy, BĐT tương đương:

\(a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng với a; b dương)

Vậy BĐT được chứng minh

Tương tự ta có: \(b^3+c^3\ge bc\left(b+c\right)\); \(c^3+a^3\ge ca\left(c+a\right)\)

Cộng vế với vế:

\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2\left(a^3+b^3+c^3\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
3 tháng 9 2020

\(\Leftrightarrow3ab+3bc+3ca\le a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

3 tháng 8 2019

B trước nhé:

Áp dụng bất đẳng thức cosi cho 2 số thực dương a^2 và b^2; b^2 và c^2 ; c^2 và a^2 ta được:

a^2 + b^2\(\ge\)2ab

Tương tự b^2 + c^2\(\ge\)2bc

Cx có c^2+a^2\(\ge\)2ac

=> 2(a^2+b^2+c^2)\(\ge\)2(ab + bc +ca)

=>a^2 + b^2 +c^2\(\ge\)ab+bc+ca

14 tháng 12 2018

Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+bc^2+ac^2=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\left(1\right)\)

Ta lại có \(abc+\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc+\left(ab+ac+b^2+bc\right)\left(c+a\right)=abc+abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2+abc=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\left(2\right)\)

Từ (1),(2)\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc+\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

6 tháng 7 2017

a, b, c dương

Ta có  \(\frac{a^3}{b}+ab\ge2\sqrt{\frac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\)   (1)

Tương tự  \(\frac{b^3}{c}+bc\ge2b^2\)  (2) và  \(\frac{c^3}{a}+ca\ge2c^2\)   (3)

Cộng (1), (2), (3) vế theo vế:  \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)

\(\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Đẳng thức xảy ra tại a=b=c

28 tháng 3 2018

        \(\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

     \(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra   \(\Leftrightarrow\)\(a=b=c\)

16 tháng 3 2016

vì với mọi số a,b,c thì ta cũng có biểu thức đó luôn đúng nên thay giá trị vô đúng là dc

27 tháng 4 2022

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

không cần đk là a,b,c là số thực cũng được @@

Sử dụng bất đẳng thức phụ \(x^2+y^2\ge2xy\)

chứng minh : \(x^2+y^2\ge2xy< =>\left(x-y\right)^2\ge0\)*đúng*

Áp dụng vào bài toán ta được :

\(2.LHS\ge ab+bc+ca+ab+bc+ca=2\left(ab+bc+ca\right)\)

\(< =>LHS\ge ab+bc+ca\)

Dấu = xảy ra \(< =>a=b=c\)