Giải pt sau: |x+5|+|x+2|+|x-2018|=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
\(\frac{x-1}{2012}-1+\frac{x+2}{2015}-1+\frac{x+5}{2018}-1+\frac{x+7}{2020}-1+4=4\)
<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2015}+\frac{x-2013}{2018}+\frac{x-2013}{2020}=0\)
<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2015}+\frac{1}{2018}+\frac{1}{2020}\right)=0\)
<=>x-2013=0
<=> x=2013
(vì \(\frac{1}{2012}+\frac{1}{2015}+\frac{1}{2018}+\frac{1}{2020}\)> 0 )
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
\(\sqrt{x+6-4\sqrt{x+2}}-\sqrt{9-4\sqrt{5}}=0\left(đk:x\ge-2\right)\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+2}-2\right)^2}=\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(\Leftrightarrow\left|\sqrt{x+2}-2\right|=\left|\sqrt{5}-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}-2=\sqrt{5}-2\\\sqrt{x+2}-2=2-\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=5\\x+2=21-8\sqrt{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=19-8\sqrt{5}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{3;19-8\sqrt{5}\right\}\)
a) ĐKXĐ: \(x\ne\pm2\)
Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)
\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow x\left(x-2\right)=x^2+4\)
\(\Leftrightarrow x^2-2x=x^2+4\)
\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)
Vậy phương trình vô nghiệm
b) ĐKXĐ: \(x\ne3;x\ne-1\)
Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)
\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là \(x=0\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
We have \(\frac{1}{2}\left(4x-2\right)=5-\left(6-x\right)\)
\(\Leftrightarrow2x-1=x-1\)
\(\Leftrightarrow3x=0\)
\(\Leftrightarrow x=0\)
So ...
1/2(4x-2)=5-(6-x)
=>2x-1=5-6+x
=>2x-x=5-6+1
=>x=0
Vậy S = {0}
đúng 100% nhé, ko đúng thì ko phải hs lớp 8
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}=\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}\)
\(\Leftrightarrow\dfrac{x-8\sqrt{x}+12}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}-\dfrac{x-9\sqrt{x}+20}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}=0\)
\(\Leftrightarrow\dfrac{x-8\sqrt{x}+12-x+9\sqrt{x}-20}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}=0\)
\(\Leftrightarrow\sqrt{x}-8=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{8}\\x=-\sqrt{8}\end{matrix}\right.\)
lap bang ra roi xet tung truong hop mot