Chứng minh rằng:\(\frac{10^{2000}+71}{9}\)là 1 số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 10\(^{2006}\)+53/9=\(\frac{10..053}{9}\)bạn thấy số có tổng chia hết cho 9 vì 1+0...0+5+3=9 nên \(\frac{10^{2006}+53}{9}\)chia hết cho 9 bạn thấy chỗ 10..053 là phải chú thích là có 2003 số 0 nhé
Cậu cho mình xin 1 like cảm ơn nhìu iu quá
Ta có: \(10^{2006}\equiv1\left(mod9\right)\)
\(53\equiv8\left(mod9\right)\)
\(\Rightarrow10^{2006}+53\equiv9\left(mod9\right)\)hay \(10^{2006}+53\equiv0\left(mod9\right)\)
hay\(10^{2006}+53⋮9\)
\(\frac{10^{2006}+53}{9}\)là số tự nhiên
Vì 102006=100.100(có 2006 chữ số 0)
Tổng các chữ số của 102006 là 1+0+0+......+0+0=1
53 có tổng các chữ số là 5+3=8
Vì 1+8=9 suy ra 102006+53 chia hết cho 9
Vậy 102006+53/9 là 1 số tự nhiên
Ta có 10^2006 =100..00 (2006 chữ số 0)
Ta có 1+0...+0+5+3=9 . Mà 9 chia hết cho 9
=> \(\frac{10^{2006}+53}{9}\)là số tự nhiên
Ta có:
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}=\left[1+\frac{1}{70}\right]+\left[\frac{1}{2}+\frac{1}{69}\right]+\left[\frac{1}{3}+\frac{1}{68}\right]+...+\left[\frac{1}{35}+\frac{1}{36}\right]\)
\(=\frac{71}{1.70}+\frac{71}{2.69}+\frac{71}{3.68}+...+\frac{71}{35.36}\)
\(=71\left[\frac{1}{1.70}+\frac{1}{2.69}+\frac{1}{3.68}+...+\frac{1}{35.36}\right]⋮71\)
=> \(A=1\times2\times3\times4\times...\times70\times\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}\right]⋮71\)=> ĐPCM
AI THẤY ĐÚNG NHỚ ỦNG HỘ NHA
Xét \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}=\left(1+\frac{1}{70}\right)+\left(\frac{1}{2}+\frac{1}{69}\right)+...+\left(\frac{1}{35}+\frac{1}{36}\right)\)
\(=\frac{71}{1.70}+\frac{71}{2.69}+...+\frac{71}{35.36}=71\left(\frac{1}{1.70}+\frac{1}{2.69}+...+\frac{1}{35.36}\right)\)
=>\(A=1.2.3.4...71.\left(\frac{1}{1.70}+\frac{1}{2.69}+...+\frac{1}{35.36}\right)⋮71\)
Vậy A chia hết cho 71
Ta có : 102006+53 = 1000...0 + 53 ( có 2006 chữ số 0 )
=1000...053 ( có 2004 chữ số 0)
Tổng các chữ số của nó là 1+0+0+... +0+5+3 = 9
Vì 9 chia hết cho 9 nên 102006+53 cũng chia hết cho 9
=> \(\frac{10^{2006}+53}{9}\) là số tự nhiên
Để 10^2006 + 53 / 9 <=> 10^2006 + 53 chia hết cho 9
Ta có : 10^2006 + 56 = 1000....000 ( có 2006 số 0 ) + 53
<=> 1 + 0 + 0 + .... + 0 + 5 + 3 = 9 chia hết cho 9
=> 10^2006 + 53 chia hết cho 9
=> 10^2006 + 53 / 9 là số tự nhiên ( đpcm )
Ta có \(10^{2006}=100000.......00000\)(có 2006 chữ số 0 và 1 chữ số 1)
\(\Rightarrow10^{2006}+53=1000000.......000053\)
[......2004 chữ số 0.......]
Mà \(\left(1+0+0+0+0+...+5+3\right)⋮9\)
\(\Rightarrow\left(10^{2006}+53\right)⋮9\)
Vậy \(\frac{10^{2006}+53}{9}\in N\)
HOK TOT
Ta có \(10^{2006}+53\) có tổng các chữ số là:\(1+0+5+3=9⋮9\)
\(\Rightarrow10^{2006}+53⋮9\)
\(\Rightarrow10^{2006}+53=9k\)
\(\Rightarrow\frac{10^{2006}+53}{9}=\frac{9k}{9}=k\in N\)
Gọi A = 102000+71
A = 10..0 + 71
A= 100...071 ÷ 9
=>102000+71/9 là số tự nhiên
K MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
cảm ơn bạn nha