chung to neu a=b+1 thi x=-1la nghiem cua da thuc g(x)=x2+a*x+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình với Nguyễn Huy Tú;Ace Legona;soyeon_Tiểubàng giải;Lê Nguyên Hạo...
Tại x = 1 thì ax2 + bx + c = a.12 + b .1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của đa thức ax2 + bx + c nếu a + b+ c = 0
Lời giải:
a) Ta thấy:
\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm phân biệt với mọi $m$
b) Áp dụng định lý Viete của pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)
Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$
Ta có đpcm.
a) \(A\left(x\right)+B\left(x\right)\)
\(=-x^3-5x^2+7x+2+x^3+6x^2-3x-7\)
\(=x^2+4x-5\)
\(A\left(x\right)-B\left(x\right)\)
\(=-x^3-5x^2+7x+2-x^3-6x^2+3x+7\)
\(=-2x^3-11x^2+11x+9\)
b) Thay \(x=1\) vào \(x^2+4x-5\), ta được:
\(1^2+4\cdot1-5=1+4-5=0\)
Thay \(x=1\) vào \(A\left(x\right)\), ta được:
\(A\left(x\right)=-1^3-5\cdot1^2+7\cdot1+2=-1-5+7+2=3\)
\(g\left(-1\right)=\left(-1\right)^2+a\cdot\left(-1\right)+b=1+\left(-a\right)+b=1-a+b\)
thế a=b+1 vào g(1), ta có:
\(g\left(-1\right)=1-\left(b+1\right)+b=1+b-b-1=0\)
Vậy nếu a=b+1 thì x=-1 là nghiệm của đa thức g(x)