Cho ∆ vuông ABC, đường cao AH. Biết AB:AC = 3:4 và BC= 15cm. Tính BH và HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BA/AC=3/4
nên HB/HC=(3/4)^2=9/16
=>HB/9=HC/16=(HB+HC)/(9+16)=15/25=0,6
=>HB=5,4cm; HC=9,6cm
Lời giải:
Vì $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ với $a>0$
Áp dụng định lý Pitago:
$AB^2+AC^2=BC^2$
$\Leftrightarrow (3a)^2+(4a)^2=225$
$\Leftrightarrow 25a^2=225$
$\Rightarrow a=3$ (do $a>0$)
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9a^2}{15}=\frac{9.3^2}{15}=5,4$ (cm)
$AC^2=CH.CB\Rightarrow CH=\frac{AC^2}{BC}=\frac{16a^2}{15}=\frac{16.3^2}{15}=9,6$ (cm)
Đặt AB = 3k; AC = 4k . Áp dụng hệ thức lượng vào tam giác vuông ABC thu được k = 3. Từ đó tính được : BH = 5,4cm, HC = 9,6cm
Ta có: AB:AC=3:4
nên \(AB=\dfrac{3}{4}AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{4}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}=\dfrac{1}{36}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{\dfrac{9}{16}}{\dfrac{9}{16}AC^2}=\dfrac{1}{36}\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=36\cdot\dfrac{25}{16}=\dfrac{225}{4}\)
\(\Leftrightarrow AC^2=100\)
hay AC=10(cm)
Ta có: \(AB=\dfrac{3}{4}AC\)
nên \(AB=\dfrac{3}{4}\cdot10=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=7.5^2-6^2=4.5^2\)
hay BH=4,5(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=10^2-6^2=64\)
hay HC=8(cm)
ta có BC=15cm và AB:AC=3:4
=>AB=9cm; AC=16cm
ta có AB2= BH.BC
=>BH= AB2/BC
<=>BH= 92/15
<=>BH=27/5(cm)
BC=BH+CH (=15cm)
=>CH= BC-BH
<=>CH=15- 27/5
<=>CH=48/5 (cm)
B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC
AH2=HB x HC =3x4=12
AH=căn 12 r tính mấy cạnh kia đi
B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4
Thế vào cong thức Pytago Tam giác ABC tính máy cái kia
Xét tam giác vuông AHB và CHA có :
góc AHB = góc CHA = 90độ
góc ABH = góc CAH ( cùng phụ với góc C )
Vậy tam giác AHB đồng dạng tam giác CHA ( g.g )
Suy ra : \(\frac{AH}{HC}=\frac{AB}{CA}\) ( 1 )
Theo đề bài \(\frac{AB}{AC}=\frac{3}{4}\) và AH = 12cm ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{12}{HC}=\frac{3}{4}\Rightarrow HC=\frac{12.4}{3}=16\) ( cm )
Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{12^2}{16}=9\) ( cm )
Vậy BH = 9cm , HC = 16cm
Học tốt
Ta có: \(\Delta ABC\) vuông tại A ( Đường cao AH )
Ta thấy \(AB:AC=3:4\)
Mà đây là 2 cạnh góc vuông
\(\Rightarrow\) Đây là bộ số Pytago: \(AB:AC:BC=3:4:5\)
Từ đó ta tính được số đo của \(\left\{{}\begin{matrix}AB=9\\AC=12\end{matrix}\right.\)
Xét \(\Delta ABC\) vuông tại A:
Theo hệ thức lượng trong \(\Delta\) vuông ta được:
+ \(AC^2=HC.BC\Rightarrow HC=\dfrac{AC^2}{BC}=9,6\left(cm\right)\)
+ \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\)