Cho \(\Delta ABC\) có AB< AC . Vẽ truNg tuyến AM . Trên tia đối tia MA lấy điểm D sao cho MD = MA.
Chứng minh \(\widehat{BAM}>\widehat{CAM}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>AB=DC
mà AB<AC
nên CD<CA
Xét ΔCDA có CD<CA
mà \(\widehat{CAD};\widehat{CDA}\) lần lượt là góc đối diện của cạnh CD,CA
nên \(\widehat{CAD}< \widehat{CDA}\)
mà \(\widehat{CDA}=\widehat{BAM}\)(ΔMAB=ΔMDC)
nên \(\widehat{BAM}>\widehat{CAM}\)
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b; góc BAM=góc CDA
mà góc CDA>góc CAM
nên góc BAM>góc CAM
a) xét tam giác ABM và tam giác DCM có:
MA = MD (gt)
góc AMB = góc CMD (đối đỉnh)
BM = CM (gt)
=> tam giác ABM = tam giác DCM (c.g.c)
b) vì tam giác ABM = tam giác DCm (câu a)
=> AB = DC (cạnh tương ứng)
góc ABM = góc MCD (góc tương ứng)
mà góc ABM và góc MCD ở vị trí so le trong
=> AB // DC
Gợi ý :
Tam giác BMA = tam giác CMD ( c. g. c )
=> AB = CD ; góc BAM = góc MDC
ta có : AB < AC
=> CD < AC
=> góc CAD < góc CDA ( qh ... )
hay góc CAM < góc CDM
mà góc CDM = góc BAM
=> Góc CAM < Góc BAM