K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{200^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1-\frac{1}{200}\)

\(=\frac{199}{200}\)

vậy \(\frac{99}{200}< \frac{199}{200}< 1\left(đpcm\right)\)

2 tháng 5 2018

rồi sao

27 tháng 4 2018

Gọi tổng trên là A

=>A>\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\) =\(\frac{1}{2}-\frac{1}{101}=\frac{99}{202}>\frac{99}{200}\)(đpcm)

27 tháng 4 2018

\(\frac{99}{202}< \frac{99}{200}\)xem lại 

14 tháng 8 2015

a) dat A=1+2+22+23+...+299

2.A=2+22+23+24+...+2100

2.A-A= 2+23+24+...+2100-(1+2+22+23+...+299)

A=2100-1

----> 1.3.5.7...197.199<\(\frac{101.102.103....200}{2^{100}-1}\)

Dat B =1.3.5.7...197.199 

B=\(\frac{1.3.5.7....197.199...2.4.6.8....200}{2.4.6.8....200}\)

B= \(\frac{1.2.3.4.5....199.200}{2.4.6.8....200}\)

B=\(\frac{1.2.3.4.5......199.200}{2^{100}.\left(1.2.3.4...100\right)}\) ( tu 2 den 200 co 100 so hang nen duoc 2100)

B =\(\frac{101.102.103....200}{2^{100}}\)

---->\(\frac{101.102.103....200}{2^{100}}<\frac{101.102.103....200}{2^{100}-1}\)

ta co : 2100 >2100-1

--->\(\frac{1}{2^{100}}<\frac{1}{2^{100}-1}\)

---> \(\frac{101.102.103...200}{2^{100}}<\frac{101.102.103...200}{2^{100}-1}\)

----> dpcm

14 tháng 8 2015

b> A= \(\frac{1.3.5.7....2499}{2.4.6.8....2500}\)  chon B=\(\frac{2.4.6.8...2500}{3.5.7.9...2501}\)

A.B = \(\frac{1.3.5.7....2499.2.4.6.8...2500}{2.4.6.8...2500.3.5.7.....2499.2501}=\frac{1}{2501}\)

Nhan xet 

\(\frac{1}{2}+\frac{1}{2}=1\)

\(\frac{2}{3}+\frac{1}{3}=1\)

vi 1/2 >1/3----> 1/2 <2/3

cm tuong tu ta se co A<B

---> A.A<A.B

---->A2<A.B

===> A2 <\(\frac{1}{2501}<\frac{1}{2500}=\frac{1}{50^2}\)

==> A2<1/502

--> A <1/50

ma 1/50<1/49

nen A<1/49

--> A < 1/72

---> A. (-1) >(-1).1/72

---> -A>-1/72

 

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

12 tháng 8 2016

Bài 1:

C = 1/101 + 1/102 + 1/103 + ... + 1/200

Có:

C < 1/101 + 1/101 + 1/101 + ... + 1/101

C < 100 . 1/101

C < 100/101

Mà 100/101 < 1

=> C < 1 (1)

Có:

C > 1/200 + 1/200 + 1/200 + ... + 1/200

C > 100 . 1/200

C > 1/2 (2)

Từ (1) và (2)

=> 1/2<C<1

Ủng hộ nha mk làm tiếp

7 tháng 5 2019

Đặt \(S=\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{200!}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}\)

\(\Rightarrow S< 1-\frac{1}{200}< 1\)

\(\Rightarrow S< 1\)( đpcm )