Tìm số nguyên tố x,y thuộc N* sao cho x4 + 4y4 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
Lời giải:
Nếu $x$ lẻ thì $x^y+1$ chẵn, mà $x^y+1>2$ với $x,y\in\mathbb{P}$ nên $x^y+1$ không thể là số nguyên tố (trái giả thiết)
Do đó $x$ chẵn $\Rightarrow x=2$
$x^y+1=2^y+1$
Nếu $y$ chẵn thì $y=2$. Khi đó $x^y+1=2^2+1=5$ cũng là snt (tm)
Nếu $y$ lẻ:
$x^y+1=2^y+1\equiv (-1)^y+1\equiv -1+1\equiv \pmod 3$
Mà $2^y+1>3$ với mọi $y$ nguyên tố lẻ nên $2^y+1$ không là snt (trái giả thiết)
Vậy $x=y=2$
x^4 + 4y^4 = x^4 + 4.x^2.y^2 + 4y^4 - 4.x^2.y^2
= (x^2 + 2y^2)^2 - (2xy)^2
= (x^2 + 2y^2 - 2xy)(x^2 + 2y^2 + 2xy)
Mà x,y thuộc số tự nhiên nên x^2 + 2y^2 - 2xy < x^2 + 2y^2 + 2xy
Mặt khác x^4 + 4y^4 là số nguyên tố nên => x^2 + 2y^2 - 2xy =1
<=> (x-y)^2 + y^2 = 1
=> x-y = 1 và y = 0 => x= 1, y = 0 (loại)
hoặc x-y = 0 và y = 1 => x=y=1
Vậy x=y=1
Cảm ơn các bạn nha